Python Lecture_1 2023-2024
Python Introduction

What is Python?

Python is a popular programming language. It was created by Guido van
Rossum, and released in 1991.

It is used for:

« web development (server-side),
« software development,

« mathematics,

« System scripting.

What can Python do?

Python can be used on a server to create web applications.

Python can be used alongside software to create workflows.

Python can connect to database systems. It can also read and modify files.
Python can be used to handle big data and perform complex mathematics.
Python can be used for rapid prototyping or production-ready software
development.

Why Python?

o Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

« Python has a simple syntax similar to the English language.

« Python has a syntax that allows developers to write programs with fewer lines
than some other programming languages.

e Python runs on an interpreter system, meaning that code can be executed as
soon as it is written. This means that prototyping can be very quick.

« Python can be treated in a procedural way, an object-oriented way or a
functional way.

Python Syntax compared to other programming languages

« Python was designed for readability and had some similarities to the English
language with influence from mathematics.

o Python uses new lines to complete a command, as opposed to other
programming languages which often use semicolons or parentheses.

« Python relies on indentation, using whitespace, to define scope; such as the
scope of loops, functions and classes. Other programming languages often
use curly brackets for this purpose.

Example
print(“Hello, World!")

Python Getting Started

Please see the video which is install Python and PyCharm Community Edition.

Python Lecture_2 2023-2024
Grammar = Syntax

2. Python Syntax — Execute Python Syntax, Python Indentation

2.1. Execute Python Syntax:

e Python syntax can be executed by writing directly in the Command Line:

Example:

print("Hello, Warld!")

2.2. Python Indentation

Indentation refers to the spaces at the beginning of a code line.

Where in other programming languages the indentation in code is for readability
only, the indentation in Python is very important.

Python uses indentation to indicate a block of code.

Example:

if 5 5 2:
print(“Five is greater than two!")

The number of spaces is up to you as a programmer, the most common
use is four, but it has to be at least one.

Example

if 5 » 4:
print(“Five is greater than two!")
if S » 2:
print(“Five is greater than two!")

¢ Python will give you an error if you skip the indentation:

Example Syntax Error:

it 8 » &;
print(“Five is greater than two!")

* You have to use the same number of spaces in the same block of code,
otherwise, Python will give you an error:

Example Syntax Error:

it S > 2
print(“Five is greater than two!")
print(“Five is greater than twol")

Python Lecture_2 2023-2024

Python Variables

¢ In Python, variables are created when you assign a value to it:

Example Variables in Python:
x 5

y = "Hello, World!"
print(x)

nn

print(y)

Python Comments
Comments can be used to explain Python code.
Comments can be used to make the code more readable.

Comments can be used to prevent execution when testing code.

Creatinga Comment
« Comments start with a #, and Python will ignore them:

Example

#This is a comment
print(“Hello, World!")

« Comments can be placed at the end of a line, and Python will ignore the
rest of the line:

Example
print("Hello, World!") #This is a comment

e A comment does not have to be text that explains the code, it can also
be used to prevent Python from executing code:

Example

#print("Hello, World!")
print(“Cheers, Mate!")

Python Lecture_2 2023-2024

Multiline Comments

¢ Python does not really have a syntax for multiline comments.
¢ To add a multiline comment you could insert a # for each line:

Example

#This is a comment
#written in

#more than just one line
print("Hello, World!")

Or, not quite as intended, you can use a multiline string.

Since Python will ignore string literals that are not assigned to a variable,
you can add a multiline string (triple quotes) in your code, and place your
comment inside it:

Example

N

This is a comment
written in
more than just one line

LLLLLL]

print(“Hello, World!")

Python Lecture_3 + 4 2023-2024

3. Python Variables

Variables:
Variables are containers for storing data values.

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

X =5

y = "John"
print(x)
print(y)

Variables do not need to be declared with any particular type, and can
even change type after they have been set.

Example
X =4 # x is of type int
x = "Sally" # x is now of type str
print(x)
Casting
If you want to specify the data type of a variable, this can be done with
casting.
Example

x = str{"Hello World") # x will be Hello World

y = int(3) # y will be 3

z = float(3) # z will be 3.0
print(x)

print(y)

print(z)

You can get the data type of a variable with the type() function.

Example
X =5
y = “John"
print(type(x))

print(type(y))

Python Lecture_3 + 4 2023-2024

Single or Double Quotes?

String variables can be declared either by using single or double quotes:

Example

(1] John [1]
s the same as

X
#
X 'John'

n e

print(x)

Case-Sensitive

Variable names are case-sensitive.

Example

This will create two variables:

a 4
A = "Sally"
#A will not overwrite a

print(a)
print(A)

Python - Variable Names

Variable Names

A variable can have a short name (like x and y) or a more descriptive name.
Rules for Python variables:

A variable name must start with a letter or the underscore character

A variable name cannot start with a number

A variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and _)

Variable names are case-sensitive (age, Age and AGE are three different
variables)

A variable name cannot be any of the Python keywords.

Example

Legal variable names:

myvar = "John"
my_var = "John"
_my_var = "John"
myvar = “John"
MYVAR = “John"
myvar2 = "John"

Python Lecture_3 + 4 2023-2024

Example

Illegal variable names:

2myvar = "John"
my-var = "John"
my var = “John"

Multi Words Variable Names
Variable names with more than one word can be difficult to read.

There are several techniques you can use to make them more
readable:

Camel Case

Each word, except the first, starts with a capital letter:

Example

myVariableName = "Johnl"
print(myVariableName)

Pascal Case

Each word starts with a capital letter:

Example

MyVariableName = "John2"
print(MyvariableName)

Snake Case

Each word is separated by an underscore character:

Example

my_variable_name = "John3"
print(my_variable_name)

Many Values to Multiple Variables

Python allows you to assign values to multiple variables in one line:

Example

X, ¥, 2 = "Orange”, "Banana“, "Cherry"
print(x)
print(y)
print(z)

Python Lecture_3 + 4 2023-2024

One Value to Multiple Variables
And you can assign the same value to multiple variables in one line:

Example

X =y =12z = "Orange"
print(x)
print(y)
print(z)

Python - Output Variables
Output Variables

The Python print() function is often used to output variables.

Example

x = "Python is awesome"
print(x)

In the print() function, you output multiple variables, separated

by a comma:
Example
x = "Python"
y = "is”
z = "awesome"

print(x, y, z)

You can also use the + operator to output multiple variables:

Example
x = "Pythonf]"
y = llisIII
z = "awesome"

print(x + y + z)

Notice the space character after "python " and “is *, without them the result would
be "Pythonisawesome".

Python Lecture_3 + 4 2023-2024

For numbers, the + character works as a mathematical operator:

Example

X =25
y = 18
print(x + y)

In the print() function, when you try to combine a string and a number with
the + operator, Python will give you an error:

Example

X=25
y == “]Ohﬂ“
print(x + y)

The best way to output multiple variables in the print() function is to separate
them with commas, which even support different data types:

Example

X=25
y = "“John"
print(x, y)

Python Lecture_5 2023-2024
Python Data Types

Built-in Data Types

» In programming, data type is an important concept.

» Variables can store data of different types, and different types can do
different things.

e Python has the following data types built-in by default, in these

categories:
: i
Text Type: str I
Numeric Types: int, float, complex I

Sequence Types: | list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview
None Type: NoneType

Getting the Data Type
You can get the data type of any object by using the type() function:

Example: Print the data type of the variable x:

X =5
print(type(x))

Setting the Data Type

In Python, the data type is set when you assignh a value to a variable:

Example Data Type
X = "Hello wWorld" str

X = 20 int

X = 20.5 float

x =19 complex
x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

x = range(6) range

Python Lecture_5

x = {"name" : "John", “age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = frozenset({"apple"”, "banana", "cherry"}) frozenset
x = True bool

X = b"Hello" bytes

x = bytearray(5) bytearray
X = memoryview(bytes(5)) memoryview
x = None NoneType

JishpoHEJ-Hﬁyldﬂdlqj)(Ll e

Example:

X = "Hello World"

#display x:
print(x)

display the data type of x:

print(type(x))

Setting the Specific Data Type

2023-2024

If you want to specify the data type, you can use the following

constructor functions:

Example Data Type
x = str("Hello World") str

x = int(20) int

x = float(20.5) float

x = complex(1j) complex

x = list(("apple"”, "banana", "cherry")) list

x = tuple(("apple”, "banana", "cherry")) tuple

X = range(6) range

x = dict(name="John", age=36) dict

x = set(("apple”, "banana", “"cherry")) set

x = frozenset(("apple", "banana", "cherry")) frozenset
x = bool(5) bool

Python Lecture_5 2023-2024

x = bytes([65, 66, 67, 68, 69]) bytes
x = bytearray(5) bytearray
x = memoryview(bytes(5)) memoryview

el Jpallids)0 A X Aal b

Example:

x = str("Hello World")

#display x:
print(x)

#display the data type of x:
print(type(x))

Python Lecture_6 2023-2024
Python Data Types

Python Numbers

There are three numeric types in Python:

. int
float
. complex

« Variables of numeric types are created when you assign a value to
them:

Example

1 # int
2.8 # float
1j # complex

print(type(x))
print(type(y))
print(type(z))

X

y
z

Int, or integer, is a whole number, positive or negative, without
decimals, of unlimited length.

Example

Integers:

X =1
y 35656222554887711
z -3255522

print(type(x))
print(type(y))
print(type(z))

Float

Float, or “floating point nhumber" is a humber, positive or negative,
containing one or more decimals.

Example
Floats:

1.10
y = 1.8

z = -35.59
print(type(x))
print(type(y))
print(type(z))

X

Python Lecture_6 2023-2024
Float can also be scientific numbers with an "e" to indicate the power of

10.
Example
Floats:

X
y
z

35e3
12E4
-87.7e100

print(x,type(x))
print(y,type(y))
print(z,type(z))

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

X = 3+45j

y = 8]
z = -5j

print(type(x))
print(type(y))
print(type(z))

Type Conversion

You can convert from one type to another with the int(), float(),
and complex() methods:

Example

Convert from one type to another:

1 # int
2.8 # float
1§ # complex

X
y
z

#convert from int to float:
a = float(x)

#convert from float to int:
b = int(y)

#convert from int to complex:
¢ = complex(x)

print(a)
print(b)
print(c)

Python Lecture_6 2023-2024
print(type(a))
print(type(b))
print(type(c))

Random Number

Python does not have a random() function to make a random
number, but Python has a built-in module called random that can be
used to make random numbers:

Example

Import the random modaule, and display a random
number between 1 and 9:

import random

print(random.randrange(1, 10))

Python Casting
Specify a Variable Type

There may be times when you want to specify a type on to a variable.
This can be done with casting. Python is an object-orientated
language, and as such it uses classes to define data types, including
its primitive types.

Casting in Python is therefore done using constructor functions:

e int() - constructs an integer number from an integer literal, a
float literal (by removing all decimals), or a string literal
(providing the string represents a whole number)

+ float() - constructs a float number from an integer literal, a
float literal or a string literal (providing the string represents a
float or an integer)

e str() - constructs a string from a wide variety of data types,
including strings, integer literals and float literals

Example

Integers:
X = int(1) # x will be 1
y = int(2.8) # v will be 2

z = int(“3") # z will be 3
print(x,y,)

Python Lecture_6 2023-2024

Example

Floats:
x = float(1) # x will be 1.0
y = float(2.8) # y will be 2.8
z = float("3") # z will be 3.0
w = float("4.2") # w will be 4.2
print(x,y,z)

Example

Strings:
X = str("s1") # x will be 's1’
y = str(2) # y will be '2°
z = str(3.0) # z will be '3.0°
print(x,y,z)

Python Casting
Specify a Variable Type

There may be times when you want to specify a type on to a variable.
This can be done with casting. Python is an object-orientated
language, and as such it uses classes to define data types, including
its primitive types.

Casting in python is therefore done using constructor functions:

« 1int() - constructs an integer number from an integer literal, a float
literal (by removing all decimals), or a string literal (providing the
string represents a whole number)

« float() - constructs a float number from an integer literal, a float
literal or a string literal (providing the string represents a float or an
integer)

e str() - constructs a string from a wide variety of data types, including
strings, integer literals and float literals

Example
Integers:

X

y
z

int(1) # x will be 1
int(2.8) # y will be 2
int("3") # z will be 3

print(x)
print(y)
print(z)

Python Lecture_6

Example
Floats:

Example
Strings:

float(1) #
float(2.8) #
float("3") #
float("4.2") #
print(x)
print(y)
print(z)
print(w)

N D X
nmn mnn

£

x = str("s1") # x
y = str(2) #y
z = str(3.0) # z
print(x)
print(y)
print(z)

x will be 1.0
y will be 2.8
zZ will be 3.0
w will be 4.2

will be 's1'
will be '2'
will be '3.0°'

2023-2024

Python Lecture_6 2023-2024

Python Strings

Strings in python are surrounded by either single quotation marks,
or double quotation marks.

'hello’ is the same as "hello".

You can display a string literal with the print() function:

Example
print("Hello")
print(‘Hello')

Assign String to a Variable

Assigning a string to a variable is done with the variable name
followed by an equal sign and the string:

Example

a = "Hello"
print(a)

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

Example
You can use three double quotes:

a = """Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""
print(a)

Or three single quotes:

Example

a = """Lorem ipsum dolor sit amet,
consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.''’
print(a)

Python Lecture_6 2023-2024

Strings are Arrays

Like many other popular programming languages, strings in Python
are arrays of bytes representing unicode characters.

However, Python does not have a character data type, a single
character is simply a string with a length of 1.

Square brackets can be used to access elements of the string.

Example

Get the character at position 1 (remember that the
first character has the position 0):

a = "Hello, wWorld!"
print(a[1])

Looping Through a String

Since strings are arrays, we can loop through the charactersin a
string, with a for loop.

Example
Loop through the letters in the word "banana™:

for x in "banana":
print(x)

String Length

To get the length of a string, use the len() function.

Example

The len() function returns the length of a string:

a = "Hello, World!"
print(len(a))

Check String

To check if a certain phrase or character is present in a string, we
can use the keyword in.

Example

Check if "free" is present in the following text:

txt = "The best things in life are free!"
print(“free" in txt)

Python Lecture 6 2023-2024

Use it in an if statement:

Example

Print only if “free" is present:

txt = "The best things in life are free!"
if "free" in txt:
print(“Yes, 'free' is present.")

Check if NOT

To check if a certain phrase or character is NOT present in a string,
we can use the keyword not in.

Example
Check if "expensive” is NOT present in the following
text:

txt = "The best things in life are free!”
print(“"expensive” not in txt)

Use it in an if statement:

Example

print only if "expensive” is NOT present:

txt = "The best things in life are free!"”
if “expensive” not in txt:
print(“No, ‘expensive’ is NOT present.")

Python Lecture_6-2 2023-2024

Python Data Types
Python Strings-
Slicing

You can return a range of characters by using the slice syntax.

Specify the start index and the end index, separated by a colon, to return a part of
the string.

Get the characters from position 2 to position 5 (not included):

Example

b ="Hello, World!"
print(b[2:5])

Note: The first character has an index of 0.

Slice From the Start

By leaving out the start index, the range will start at the first character:

Get the characters from the start to position 5 (not included):

Example

b = "Hello, World!"
print(b[:5])

Slice To the End
By leaving out the end index, the range will go to the end:

Get the characters from position 2, and all the way to the end:

Example

b = "Hello, World!"
print(b[2:])

Use negative indexes to start the slice from the end of the string:
Example

Get the characters:
From: "o" in "World!" (position -5)
To, but not included: "d" in "World!" (position -2):

b = "Hello, World!"
print(b[-5:-2])

Python Lecture_7 2023-2024

Python Data Types
Python Strings-

Modify Strings

Python has a set of built-in methods that you can use on strings.

Upper Case
Example

The upper() method returns the string in upper case:

a = "Hello, World!"
print(a.upper())

Example

The 1ower() method returns the string in lower case:

a = "Hello, World!"
print(a.lower())

Rem hi [

Whitespace is the space before and/or after the actual text, and
very often you want to remove this space.

Example

The strip() method removes any whitespace from the
beginning or the end:

a =" Hello, World! '
print(a.strip()) # returns "Hello, World!"

Repl fin
Example
The replace() method replaces a string with another string:

a = “Hello, World!"
print(a.replace("H", "2"))

lit Strin

The split() method returns a list where the text between the
specified separator becomes the list items.

Example

The split() method splits the string into substrings if it
finds instances of the separator:

a = "Hello, World!"
print(a.split(”,")) # returns ['Hello', ' World!']

Python Lecture_7 2023-2024

Python Data Types
Python Strings-

String Concatenation

To concatenate, or combine, two strings you can use the + operator.

Example
Merge variable a with variable b into variable c:

"Hello"
b "World"
[a+b
print(c)

Example

To add a space between them, add a " “:

a = "Hello"
b = "World”
c=a+""+b

print(c)

Python Lecture 7 2023-2024

Python Data Types
Python Strings-

String Format

As we learned in the Python Variables, we cannot combine strings and
numbers like this:

Example
age = 36
txt = "My name is John, I am " + age
print(txt)

But we can combine strings and numbers by using the format() method!

The format() method takes the passed arguments, formats them, and
places them in the string where the placeholders (} are:

Example
Use the format() method to insert numbers into strings:
age = 36

txt = "My name is John, and I am {}"
print(txt.format(age))

The format() method takes unlimited number of arguments, and are
placed into the respective placeholders:

Example
quantity = 3
itemno = 567

price = 49,95
myorder = "I want {} pieces of item {} for {} dollars.”
print(myorder.format(quantity, itemno, price))

You can use index numbers {2} to be sure the arguments are placed in
the correct placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want to pay {2} dollars for {@} pieces of item {1}."
print(myorder.format(quantity, itemno, price))

Python Lecture_7 2023-2024

Python Data Types
Python Strings-

Escape Characters

To insert characters that are illegal in a string, use an escape character.

An escape character is a backslash \ followed by the character you want to
insert,

An example of an illegal character is a double quote inside a string that is
surrounded by double quotes:

Example

You will get an error if you use double quotes inside
a string that is surrounded by double quotes:

txt = "We are the so-called "A" from the north."
print(txt)

To fix this problem, use the escape character \":

Example
txt = "We are the so-called \"A\" from the north."

print(txt)

Escape Characters

Other escape characters used in Python:

Code Result

X' Single Quote

! Backslash

\n New Line

\e Carriage Return
\t Tab

\b Backspace

\f Form Feed

\ooo Octal value

\xhh Hex value

Python Lecture_7 2023-2024

Example 1

txt = "It\'s alright.’
print(txt)

output

It's alright.

Example 2

txt = "This will insert one \\ (backslash).”
print(txt)

output

This will insert one \ (backslash).

Example 3

txt = "Hello\nWorld!"
print(txt)

output
Hello
World!

Example 4

txt = "Hello\rWorld!"”
print{txt)

output

world!
1. "Hello" is printed.
2. The \r causes the cursor to return to the start of the line.
3. “World!" is then printed, starting from the beginning of the line.

So, instead of creating a new line, the carriage return essentially "rewinds" the cursor to the
start of the current line. As a result, "World!" is printed over the existing characters, giving

the appearance of replacing the space after "Hello."

The output visually looks like:

Python Lecture_7 2023-2024

Example 5

txt = "Hello\twWorld!"
print(txt)

output

Hello World!

Example 6

#This example erases one character (backspace):
txt = "Hello \bworld!"
print(txt)

output

HelloWorld!

Example 7

#A backslash followed by three integers will result in a octal value:
txt = "\110\145\154\154\157"
print(txt)

output
Hello
Example 8

#A backslash followed by an 'x' and a hex number represents a hex value:
txt = “\x48\x65\x6c\x6c\x6F"

print(txt)

output

Hello

Python Lecture_9 2023-2024

Python Data Types

Python Booleans
Booleans represent one of two values: True or False.

Boolean Values
In programming you often need to know if an expression is True Or False.
You can evaluate any expression in Python, and get one of two answers, True or False.

When you compare two values, the expression is evaluated and Python returns the
Boolean answer:

Example
print(10 > 9)
print(10 == 9)
print(10 < 9)

When you run a condition in an if statement, Python returns True or False:

Example

Print a message based on whether the condition is True or False:

a = 200
b = 33

if b > a:

print("b is greater than a")
else:

print("b is not greater than a")

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give
you True or False in return,

Example

Evaluate a string and a number:

print(bool("Hello"))
print(bool(15))

Example

Evaluate two variables:

X = "Hello"

y = 15
print(bool(x))
print(bool(y))

Python Lecture_9 2023-2024

Most Values are True

Almost any value is evaluated to true if it has some sort of content.
Any string is True, except empty strings.

Any number is True, except e.

Any list, tuple, set, and dictionary are True, except empty ones.

Example
The following will return True:

bool("abc")
boo1(123)
bool(["apple”, “cherry”, “banana“])

Some Values are False

In fact, there are not many values that evaluate to False, except empty values,
such as (), [], {}, "", the number @, and the value None. And of course the
value False evaluates to False.

Example
The following will return False:

bool(False)
bool (None)
bool(@)
bool("")
bool(())
bool([])

bool({})

Python Lecture_9 2023-2024

Python Operators
Python Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example
print(106 + 5)

Python divides the operators into the following groups:

s« Arithmetic operators
Assignment operators

« Comparison operators
Logical operators

« Identity operators

« Membership operators

« Bitwise operators

Example

print ("Fxprosaiona™)
prinL{*Avitlunel ie Expressions ')
A 2

Iy = 3

G o= 2.3

d at b

print (d)

print{a + b)

print{a +)

print (b / a)

print(b // a)

print(a * c¢)

print (a ** b)

print (17 & 3)

a += 7

print(a)

a++ ## SyntaxError: invalid syntax
a-- # SyntaxFrrer: invalid syntax
a += 1]

print(a) # 10
a-=1

print(a) # 9

-

al
- f see Lhe future
floor division
. 6

{(power)

{modulus)
ia the same as a = a + 7
9

R R R R R
e

Python Lecture_9 2023-2024

Example

print ("Python Comparison Operators™)
a=25

b =2

print {(a > b)

Example

print. ("Python Comparison Operators")

print('== Is Bqual To Fxamplec 3 == 5 gives us False')

print ('l Not Equal To Example 3 |l= 5 glves us True')

print (> Greater Than Exanple 3 > 5 glves ug Falze")

printiT= Less Than Example 3 < b gilves us True')

print.('>= @reater Than or Fcual To Example 3 »= 4 give ua Falae')
prinb('< Less Than or Equal To Exampled < 5 glveg us Toue')

Example

print ("Python Comparison Oparators"™)
O o=

b 2

ft equal Lo operalor

r;l'{h?',['a - Y -" N == b]

f not cemial to cparatar

priob{'a | b T, a ! L)

ft grealesr Lhan Lhe operalor

print('a » b =', a > b)

§ lasa than the aparator

priunl(t'a < b ', a < h)

ff greales Lhau or =2qual Lo Lhe operalos
print.('a »= b =', a >= b)

ff lessg Lhan or equal Lo Lhe operalos
priol{’s < b ", 4 < bl

Example

Frint ("Fython Togical Oparatora")

prinl (tand a and b Logleal AND: True ouly L bolh Lthe operands are True')

print. ('orxr aor b Togical OR: Truc it at leaat ona of the aperanda is True')

print ('mot not a Tagical NHOT: Truc if tha operand is Falac and vicoe=varaa')
Example

print ("Python Logical Operators™)
logical AND

print (True and True) # True
peint (True and False) fi False

logical OR
print(True or False) # True

¥ logical NOT
print(not True) # False

Python Lecture_9

Example

print ("Python Bitwise operators™)

printi'& Bitwise
printi('| Bitwige
print ('~ Bitwise
print(*'” Bitwisze

print('>> Blitwise
print("<< Bitwise

Example
numberl=12345
number2=56789

AND ')

OR ')

NOT ')

XOR ')
right')

left shift')

print(bin(numberl) [2:])
print(bin(number2) [2:])
numbarisnumberlanumbher.?
numberd pumberl | number2
numberS npumberl®number?
numbere=~numherl

prinbibin{nunberd) [2:]
print(bin(numberd) [2:]
print(bin{nmmberh) |2 |
prinlibin(nunberd) [3:]
numberl g

numhary >»=4
print(kin(numberl) | 3:
priolibin{ouwdiec2) [2:

—

2023-2024

Python Lecture_10 2023-2024

Python If ... Else
Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

e Equals:a == b

« Not Equals:a !=b

e lLessthan:a < b

o Lessthanorequalto:a <=b

e Greaterthan:a > b

« Greater than orequalto:a >= b

These conditions can be used in several ways, most commonly in "if statements" and
loops.

An "if statement” is written by using the if keyword.

Example

If statement:

n o= 33
B = 200
il b > a:
prigl{'b is grealer Lhao at')

b ia graeater than a

Python relies on indentation (whitespace at the beginning of a line)

Example
a 33
b o= 200
ifr b > a:
print("b is greater than a") § you will get an error

File "D:\Pathon Programs\first semster program\condl.py™, line 4
print ("™ is greater than a") ¥ you will get an error

IndentationBError: expected an indented block arter 'if* atatement on line 3

Python Lecture_10 2023-2024
Elif

The elif keyword is Python's way of saying "if the previous conditions were not true,
then try this condition”,

Example

a = 33
4] 33
if b » a:
print (™ 1a greater than a")
clift A == b
priol{T™a and b are equal™)

Output

a and b are ey (Il

Else

The else keyword catches anything which isn't caught by the previous conditions

Example

a = 200
b =33
if b > a:

print(“b is greater than a")
elif a == b:

print(“a and b are equal®)
else:

print(“a is greater than b")

Output

a Ls greater than b

Example

a = 200
b =33
if b » a:
print(“b is greater than a")
else:
print(“b is not greater than a")

Output

b is not greater than a

Python Lecture_10 2023-2024

Short Hand If

If you have only one statement to execute, you can put it on the same line as the if
statement.

Example : One line if statement:

a 200

b = 33

il a > b: print(™a 1s greater Lthan b"™)

Output

4 ls greater Lhan b

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for else, you can put it
all on the same line:

Example One line if else statement:

a=2

b = 330
print("A") if a > b else print("B")

Output

i

Example One line if else statement, with 3 conditions:

a = 330
b = 330
prinL{™A™) if a4 > b else prinL{("™ ") if a b else prinL("B"™)

Output

And

The and keyword is a logical operator, and is used to combine conditional statements:

Example Test if a is greater than b, AND if c is greater than a:

a = 200
b= 33
c = 500

if a > band c > a:
print(“Both conditions are True")

Output

Both conditions are True

Python Lecture_10 2023-2024

Or

The or keyword is a logical operator, and is used to combine conditional statements:

Not

Example a - 200
b 33
500
1F a>bora>c:
print("At least one of the conditions is True")

Output

AL least one of the conditions is True

The not keyword is a logical operator, and is used to reverse the result of the
conditional statement:

Example Test if a is NOT greater than b:
as=s 33

b =

if not a> b:

print("a is NOT greater than b")

Output

a iz NOY grealer Lhan b

Nested If

You can have if statements inside if statements, this is called nested if statements.

Example
x 41
if x > 10:
print ("Above ten, ™)
if x > 20:
print {("and also above 201")
else:
print{"but not above 20.")

Output
Above ten,

and also above 20!

Python Lecture_10 2023-2024
The pass Statement

if statements cannot be empty, but if you for some reason have an if statement with
no content, put in the pass statement to avoid getting an error.

Example
a o= 33
b = 200

if b > a:
pasa

Output

Python Lecture_11 2023-2024

Python While Loops
Python Loops

Python has two primitive loop commands:

» while loops
« for loops

The while Loop

With the while loop we can execute a set of statements as long as a condition is true.

Example

Printi as long as i is less than 6:

i=1

while i < 6:
print(i)
i+=1

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need to
define an indexing variable, i, which we set to 1.

The break Statement

With the break statement we can stop the loop even if the while condition is true:

Example

Exit the loop when i is 3:

i=1
while i < 6:
print(i)
if i == 3:
break
i+=1

Python Lecture_11 2023-2024
The continue Statement

With the continue statement we can stop the current iteration, and continue with the
next:

Example

Continue to the next iteration if i is 3:

i=90
while i < 6:
i+=1
if 1 == 3:
continue
print(i)

The else Statement

With the else statement we can run a block of code once when the condition no
longer is true:

Example

Print a message once the condition is false:

i=1
while i < 6:
print(i)
i+=1
else:
print("i is no longer less than 6&")

Python Lecture_12 2023-2024

Python for Loops

A for loop is used for iterating over a sequence (that is either a list, a
tuple, a dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and
works more like an iterator method as found in other object-orientated
programming languages.

With the for loop we can execute a set of statements, once for each
item in a list, tuple, set etc.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana”:

for x in "banana":
print(x)

The range() Function

To loop through a set of code a specified number of times, we can
use the range() function,

The range() function returns a sequence of numbers, starting from 0

by default, and increments by 1 (by default), and ends at a specified
number.

Example

Using the range() function:

for x in range(6):
print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to specify
the starting value by adding a parameter: range(2, 6), which means values from 2 to 6
(but not including 6):

Python Lecture_12 2023-2024

Example

Using the start parameter:

for x in range(2, 6):
print(x)

The range() function defaults to increment the sequence by 1, however it is possible
to specify the increment value by adding a third parameter: range(2, 30, 3)

Example

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):
print(x)

Else in For Loop

The glse keyword in a for loop specifies a block of code to be executed when
the loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):
print(x)
else:
print("Finally finished!")

Note: The else block will NOT be executed if the loop is stopped by
a break statement.

Example

Break the loop when x is 3, and see what happens with the else block:

for x in range(6):
if x == 3: break
print(x)
else:
print("Finally finished!")

Python Lecture_12 2023-2024

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer
loop":

Example
for 1 in range(3):
for j in range(3):
print(f' ({1}, {iH")

This code will output:
(0,0)
(0,1)
(0,2)
(1,0
(11)
(1,2)
(2,0)
(2,1)
(2,2)

The pass Statement

for loops cannot be empty, but if you for some reason have a for loop with
no content, put in the pass statement to avoid getting an error.

Example
for 1 in range(3):

pass

BOFRIRIEN

o gl U 45 3
ia gladl) CASpE audd
Lecture 13
Example 1

If the score is 90 or above, it assigns the grade 'A’.

If the score is between 80 (inclusive) and 90 (exclusive), it assigns the grade 'B'.
If the score is between 70 (inclusive) and 80 (exclusive), it assigns the grade 'C'. »
If the score is between 60 (inclusive) and 70 (exclusive), it assigns the grade 'D'.

If none of the above conditions are met, it assigns the grade 'F'. »

Example of if-elif-else statement for grading
score = 75
if score >= 950:
grade = 'A'
print ("grade" ,grade)
elif 80 <= score < 90:
grade = 'B'
print ("grade" ,grade)
elif 70 <= scoxre < 80:
grade = 'C’
print ("grade" ,grade)
elif 60 <= scoxre < 70:
grade = 'D’'
print ("grade" ,grade)
else:
grade = 'F'
print ("grade" ,grade)
print(£"Your score is (score)}, and your grade is (grade)}.")

Example 2

Example of if-elif-else statement to find the maximum of three numbers
numl = 15
num2 = 24
numi = 18
if numl >= num2 and numl >= num3:
max num = numl
elif num?2 >= numl and num2 >= num3:
max num = num2
else:
max_num = num3

print (£"The maximum of {numl}, (num2}, and {(num3} is {max num}.")

« If num1 is greater than or equal to both num2 and nums3, it assigns
max num the value of numi.

o If num2 is greater than or equal to both num1 and nums, it assigns
max_num the value of num2.

« If neither of the above conditions is true (implying that nun3 is the
greatest), it assigns max_num the value of num3.

Gl Ay
Cila ghaall L g 4383 408
S glaall CUSE aud
Lecture 13
Example 3

Example program to check if a number is positive, negative, or zeroc

Taking user input
num = float(input ("Enter a number: "))

Checking if the number is positive, negative, or zero
if num > 0:
print ("The number is positive.")
elif num < 0:
print("The number is negative.")
else:
print("The number is zero.")

Example 4

Example program to determine the eligibility for voting based on
age and citizenship

Taking user input for age and citizenship
age = int(input("Enter your age: "))
citizenship = input("Are you a citizen? (yes/no): ").lower()

Checking eligibility for voting
if age >= 18:
if citizenship = "yes":
print ("You are eligible to vote. Exercise your right!")
else:
print ("Sorry, you must be a citizen to vote.")
else:
print("Scxrxy, you are not eligible to vote. You must be at least
18 years old.")

Example 5

original string = “"python"

reversed string = original string[::-1]

print("Original String:", original_ string)

print ("Reversed String:", reversed stxing)

output
Original String: python

Reversed String: nohtyp

G Al
o e U iS5 28
Sl leall CASE aud
Lecture 13
Example 6

Taking user input for a woxd
user_word = input("Enter a woxrd: ")

Convert the word to lowercase for case-insensitive comparison
lowercase_word = user_word.lower ()

Check if the lowercase word is the same when reversed
if lowercase word == lowercase word[::-1]:
print(f"{user word} is a palindrome!")
else:
print(f"{user word} is not a palindrome.")

Note: In the context of palindrome checking, using [::-1] allows you to easily

Example 7

Example of if-else statement to check if a number is even or odd
number = 42

if number % 2 = 0:

print (£"The number {number} iz even.")
else:
print (£"The number {number} is odd.")

If the numbex Iis divisible by 2 (i.e., the remainder when divided by 2 is 0),
it prints that the number is even.

If the remainder is not 0 (i.e., the number is not divisible by 2), it prints
that the number is odd.

G Aadls
e sl . 5 3
i sl A2
Lecture 13
Example 8
Example of if-elif-else to categorize temperature
temperature = 28
if temperature < 0:
category = "Freezing”
elif 0 <= temperature < 10:
category = "Very Cold"
elif 10 <= temperature < 20:
category = "Cold”
elif 20 <= temperature < 30:
category = "Moderate"
elif 30 < temperature < 40:
category = "Warm"
else:
category = "Hot"

print (f"The temperature is (temperature)} degrees Celsius, which is
categorized as [category).")

ROFRTRIEN
il gladl L 45 3
il el CISE audd
Lecture 13
Example 9
Taking user input for the number of sides

num sides = int(input("Enter the number of sides of the gecmetric
shape: "))

Checking the type of gecmetric shape based on the number of sides
if num sides > 0:
if num sides == 3:
print("It's a triangle.")
elif num sides == 4:
print("It's a quadrilateral.")
elif num sides == 5:
print("It's a pentagon.”)
elif num sides == 6:
print("It's a hexagon.")
elif num sides == 7:
print("It's a heptagon.")
elif num sides == §:
print("It's an octagon.")
else:
print ("It's a polygon with moxre than 8 sides.")
else:

print ("Please enter a valid number of sides.")

