




















384 MATHEMATICS

laid down some axioms to interpret probability, in his book ‘Foundation of Probability’

published in 1933. In this Chapter, we will study about this approach called axiomatic

approach of probability. To understand this approach we must know about few basic

terms viz. random experiment, sample space, events, etc. Let us learn about these all,

in what follows next.

16.2  Random Experiments

In our day to day life, we perform many activities which have a fixed result no matter

any number of times they are repeated. For example given any triangle, without knowing

the three angles, we can definitely say that the sum of measure of angles is 180°.

We also perform many experimental activities, where the result may not be same,

when they are repeated under identical conditions. For example, when a coin is tossed

it may turn up a head or a tail, but we are not sure which one of these results will

actually be obtained. Such experiments are called random experiments.

An experiment is called random experiment if it satisfies the following two

conditions:

  (i) It has more than one possible outcome.

(ii) It is not possible to predict the outcome in advance.

Check whether the experiment of tossing a die is random or not?

In this chapter, we shall refer the random experiment by experiment only unless

stated otherwise.

16.2.1  Outcomes and sample space  A possible result of a random experiment is

called its outcome.

Consider the experiment of rolling a die. The outcomes of this experiment are 1,

2, 3, 4, 5, or 6, if we are interested in the number of dots on the upper face of the die.

The set of outcomes {1, 2, 3, 4, 5, 6} is called the sample space of the experiment.

Thus, the set of all possible outcomes of a random experiment is called the sample

space associated with the experiment. Sample space is denoted by the symbol S.

Each element of the sample space is called a sample point. In other words, each

outcome of the random experiment is also called sample point.

Let us now consider some examples.

Example 1 Two coins (a one rupee coin and a two rupee coin) are tossed once. Find

a sample space.

Solution Clearly the coins are distinguishable in the sense that we can speak of the

first  coin and the second coin. Since either coin can turn up Head (H) or Tail(T), the

possible outcomes may be
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Heads on both coins = (H,H) = HH

Head on first coin and Tail on the other  = (H,T) = HT

Tail on first coin and Head on the other = (T,H) = TH

Tail on both coins = (T,T) = TT

Thus, the sample space is S = {HH, HT, TH, TT}

ANote   The outcomes of this experiment are ordered pairs of H and T. For the

sake of simplicity the commas are omitted from the ordered pairs.

Example 2 Find the sample space associated with the experiment of rolling a pair of

dice (one is blue and the other red) once. Also, find the number of elements of this

sample space.

Solution Suppose 1 appears on blue die and 2 on the red die. We denote this outcome

by an ordered pair (1,2). Similarly, if ‘3’ appears on blue die and ‘5’ on red, the outcome

is denoted by the ordered pair (3,5).

In general each outcome can be denoted by the ordered  pair (x, y), where x is

the number appeared on the blue die and y is the number appeared on the red die.

Therefore, this sample space is given by

S = {(x, y): x is the number on the blue die and y is the number on the red die}.

The number of elements of this sample space is 6 × 6 = 36 and the sample space is

given below:

{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6)

(3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6)

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}

Example 3 In each of the following experiments specify appropriate sample space

(i) A boy has a 1 rupee coin, a 2 rupee coin and a 5 rupee coin in his pocket. He

takes out two coins out of his pocket, one after the other.

(ii) A person is noting down the number of accidents along a busy highway

during a year.

Solution (i) Let Q denote a 1 rupee coin, H denotes a 2 rupee coin and R denotes a 5

rupee coin. The first coin he takes out of his pocket may be any one of the three coins

Q, H or R. Corresponding to Q, the second draw may be H or R. So the result of two

draws may be QH or QR. Similarly, corresponding to H, the second draw may be

Q or R.

Therefore, the outcomes may be HQ or HR. Lastly, corresponding to R, the second

draw may be H or Q.

So, the outcomes may be RH or RQ.
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Thus, the sample space is S={QH, QR, HQ, HR, RH, RQ}

(ii) The number of accidents along a busy highway during the year of observation

can be either 0 (for no accident ) or 1 or 2, or some other positive integer.

Thus, a sample space associated with this experiment is S= {0,1,2,...}

Example 4  A coin is tossed. If it shows head, we draw a ball from a bag consisting of

3 blue and 4 white balls; if it shows tail we throw a die. Describe the sample space of

this experiment.

Solution Let us denote blue balls by B
1
, B

2
, B

3
 and the white balls by W

1
, W

2
, W

3
, W

4
.

Then a sample space of the experiment is

S = { HB
1
, HB

2
, HB

3
, HW

1
, HW

2
, HW

3
, HW

4
, T1, T2, T3, T4, T5, T6}.

Here HB
i
 means head on the coin and ball B

i
 is drawn, HW

i
 means head on the coin

and ball W
i
 is drawn. Similarly, Ti means tail on the coin and the number i on the die.

Example 5 Consider the experiment in which a coin is tossed repeatedly until a head

comes up. Describe the sample space.

Solution In the experiment head may come up on the first toss, or the 2nd toss, or the

3rd toss and so on till head is obtained. Hence, the desired sample space is

S= {H, TH, TTH, TTTH, TTTTH,...}

EXERCISE 16.1

In each of the following Exercises 1 to 7, describe the sample space for the indicated

experiment.

1. A coin is tossed three times.

2. A die is thrown two times.

3. A coin is tossed four times.

4. A coin is tossed and a die is thrown.

5. A coin is tossed and then a die is rolled only in case a head is shown on the coin.

6. 2 boys and 2 girls are in Room X, and 1 boy and 3 girls in Room Y. Specify the

sample space for the experiment in which a room is selected and then a person.

7. One die of red colour, one of white colour and one of blue colour are placed in a

bag. One die is selected at random and rolled, its colour and the number on its

uppermost face is noted. Describe the sample space.

8. An experiment consists of recording boy–girl composition of families with 2

children.

(i)  What is the sample space if we are interested in knowing whether it is a boy

    or girl in the order of their births?
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Description of events Corresponding subset of ‘S’

Number of tails is exactly 2 A = {TT}

Number of tails is atleast one B = {HT, TH, TT}

Number of heads is atmost one C = {HT, TH, TT}

Second toss is not head D = { HT, TT}

Number of tails is atmost two S  = {HH, HT, TH, TT}

Number of tails is more than two φ

The above discussion suggests that a subset of sample space is associated with

an event and an event is associated with a subset of sample space. In the light of this

we define an event as follows.

Definition  Any subset E of a sample space S is called an event.

16.3.1  Occurrence of an event  Consider the experiment of throwing a die. Let E

denotes the event “ a number  less than 4 appears”. If actually ‘1’ had appeared on the

die then we say that event E has occurred. As a matter of fact if outcomes are 2 or 3,

we say that event E has occurred

Thus, the event E of a sample space S is said to have occurred if the outcome

ω of the experiment is such that ω∈ E. If the outcome ω  is such that ω  ∉ E, we say

that the event E has not occurred.

16.3.2  Types of events  Events can be classified into various types on the basis  of the

elements they have.

1. Impossible and Sure Events  The empty set φ and the sample space S describe

events. In fact φ is called an impossible event and S, i.e., the whole sample space is

called the sure event.

To understand these let us consider the experiment of rolling a die. The associated

sample space is

S = {1, 2, 3, 4, 5, 6}

Let E be the event “ the number appears on the die is a multiple of 7”. Can you

write the subset associated with the event E?

Clearly no outcome satisfies the condition given in the event, i.e., no element of

the sample space ensures the occurrence of the event E. Thus, we say that the empty

set only correspond to the event E. In other words we can say that it is impossible to

have a multiple of 7 on the upper face of the die. Thus, the event E = φ  is an impossible

event.

Now let us take up another event F “the number turns up is odd or even”. Clearly
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F = {1, 2, 3, 4, 5, 6,} = S, i.e., all outcomes of the experiment ensure the occurrence of

the event F. Thus, the event F = S is a sure event.

2. Simple Event  If an event E has only one sample point of a sample space, it is

called a simple (or elementary) event.

In a sample space containing n distinct elements, there are exactly n simple

events.

For example in the experiment of tossing two coins, a sample space is

S={HH, HT, TH, TT}

There are four simple events corresponding to this sample space. These are

E
1
= {HH}, E

2
={HT}, E

3
= { TH} and E

4
={TT}.

3. Compound Event  If an event has more than one sample point, it is called  a

Compound event.

For example, in the experiment of “tossing a coin thrice” the events

E: ‘Exactly one head appeared’

F: ‘Atleast one head appeared’

G: ‘Atmost one head appeared’ etc.

are all compound events. The subsets of S associated with these events are

E={HTT,THT,TTH}

F={HTT,THT, TTH, HHT, HTH, THH, HHH}

G= {TTT, THT, HTT, TTH}

Each of the above subsets contain more than one sample point, hence they are all

compound events.

16.3.3  Algebra of events  In the Chapter on Sets, we have studied about different

ways of combining two or more sets, viz, union, intersection, difference, complement

of a set etc. Like-wise we can combine two or more events by using the analogous set

notations.

Let A, B, C be events associated with an experiment whose sample space is S.

1. Complementary Event For every event A, there corresponds another event

A′ called the complementary event to A. It is also called the event ‘not A’.
For example, take the experiment ‘of tossing three coins’. An associated sample

space is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

Let  A={HTH, HHT, THH} be the event ‘only one tail appears’

Clearly for the outcome HTT, the event A has not occurred. But we may say that

the event ‘not A’ has occurred. Thus, with every outcome which is not in A, we say

that ‘not A’ occurs.
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Thus the complementary event ‘not A’ to the event A is

A′ = {HHH, HTT, THT, TTH, TTT}

or A′ = {ω : ω ∈ S and ω ∉A} = S – A.

2. The Event ‘A or B’ Recall that union of two sets A and B denoted by A ∪ B
contains all those elements which are either in A  or in B or in both.

When the sets A and B are two events associated with a sample space, then

‘A ∪ B’ is the event ‘either A or B or both’. This event ‘A ∪ B’ is also called ‘A or B’.

Therefore Event ‘A or B’ = A ∪ B
= {ω : ω ∈ A or ω ∈ B}

3. The Event ‘A and B’ We know that intersection of two sets A ∩ B is the set of

those elements which are common to both A and B. i.e., which belong to both

‘A and B’.

If A and B are two events, then the set A ∩ B denotes the event ‘A and B’.

Thus,       A ∩ B = {ω : ω ∈ A and ω ∈ B}

For example, in the experiment of ‘throwing a die twice’ Let A be the event

‘score on the first throw is six’ and B is the event ‘sum of two scores is atleast 11’ then

A = {(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}, and  B = {(5,6), (6,5), (6,6)}

so A ∩ B = {(6,5), (6,6)}

Note that the set A ∩ B = {(6,5), (6,6)} may represent the event ‘the score on the first

throw  is six and the sum of the scores is atleast 11’.

4. The Event ‘A but not B’ We know that A–B is the set of all those elements

which are in A but not in B. Therefore, the set A–B may denote the event ‘A but not

B’.We know that

       A – B = A ∩ B´

Example 6 Consider the experiment of rolling a die. Let A be the event ‘getting a

prime number’, B be the event ‘getting an odd number’. Write the sets representing

the events (i) Aor B (ii) A and B (iii)  A but not B (iv) ‘not A’.

Solution Here S = {1, 2, 3, 4, 5, 6}, A = {2, 3, 5} and B = {1, 3, 5}

Obviously

(i) ‘A or B’ = A ∪ B = {1, 2, 3, 5}

(ii) ‘A and B’ = A ∩ B = {3,5}

(iii) ‘A but not B’ =  A – B = {2}

(iv) ‘not  A’ = A′ = {1,4,6}
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16.3.4 Mutually exclusive events In the experiment of rolling a die, a sample space is

S = {1, 2, 3, 4, 5, 6}. Consider events, A ‘an odd number appears’ and B ‘an even

number appears’

Clearly the event A excludes the event B and vice versa. In other words, there is

no outcome which ensures the occurrence of events A and B simultaneously. Here

A = {1, 3, 5} and B = {2, 4, 6}

Clearly A ∩ B = φ,  i.e., A and B are disjoint sets.

In general, two events A and B are called mutually exclusive events if the

occurrence of any one of them excludes the occurrence of the other event, i.e., if they

can not occur simultaneously. In this case the sets A and B are disjoint.

Again in the experiment of rolling a die, consider the events A ‘an odd number

appears’ and event B ‘a number less than 4 appears’

Obviously A = {1, 3, 5} and B = {1, 2, 3}

Now 3 ∈ A  as well as 3 ∈ B

Therefore,  A and B are not mutually exclusive events.

Remark Simple events of a sample space are always mutually exclusive.

16.3.5 Exhaustive events Consider the experiment of throwing a die. We have

S = {1, 2, 3, 4, 5, 6}. Let us define the following events

A: ‘a number less than 4 appears’,

B: ‘a number greater than 2 but less than 5 appears’

and C: ‘a number greater than 4 appears’.

Then A = {1, 2, 3}, B = {3,4} and C = {5, 6}. We observe that

A ∪ B ∪ C = {1, 2, 3} ∪ {3, 4} ∪ {5, 6} = S.

Such events A, B and C are called exhaustive events. In general, if E
1
, E

2
, ..., E

n
 are n

events of a sample space S and if

1 2 3
1

E E E E E S
n

n i
i

...
=

∪ ∪ ∪ ∪ = ∪ =

then E
1
, E

2
, ...., E

n
 are called exhaustive events.In other words, events E

1
, E

2
, ..., E

n

are said to be exhaustive if atleast one of them necessarily occurs whenever the

experiment is performed.

Further, if E
i
 ∩ E

j
 = φ for i ≠ j  i.e., events E

i
 and E

j 
are pairwise disjoint and

SE
1

=∪
=

i

n

i
, then events E

1
, E

2
, ..., E

n 
are called mutually exclusive and exhaustive

events.
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We now consider some examples.

Example 7 Two dice are thrown and the sum of the numbers which come up on the

dice is noted. Let us consider the following events associated with this experiment

A: ‘the sum is even’.

B: ‘the sum is a multiple of 3’.

C: ‘the sum is less than 4’.

D: ‘the sum is greater than 11’.

Which pairs of these events are mutually exclusive?

Solution There are 36 elements in the sample space S = {(x, y):  x, y = 1, 2, 3, 4, 5, 6}.

Then

A = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4),

       (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)}

B = {(1, 2), (2, 1), (1, 5), (5, 1), (3, 3), (2, 4), (4, 2), (3, 6), (6, 3), (4, 5), (5, 4),

       (6, 6)}

C = {(1, 1), (2, 1), (1, 2)} and D = {(6, 6)}

We find that

A ∩ B = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1), (6, 6)} ≠ φ

Therefore,  A and B are not mutually exclusive events.

Similarly A ∩ C ≠ φ, A ∩ D ≠ φ, B ∩ C ≠ φ and B ∩ D ≠ φ.

Thus, the pairs of events, (A, C), (A, D), (B, C), (B, D) are not mutually exclusive

events.

Also C ∩ D = φ and so C and D are mutually exclusive events.

Example 8 A coin is tossed three times, consider the following events.

A: ‘No head appears’, B: ‘Exactly one head appears’ and C: ‘Atleast two heads

appear’.

Do they form a set of mutually exclusive and exhaustive events?

Solution The sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

and A = {TTT}, B = {HTT, THT, TTH}, C = {HHT, HTH, THH, HHH}

Now

A ∪ B ∪ C = {TTT, HTT, THT, TTH, HHT, HTH, THH, HHH} = S

Therefore,   A, B and C are exhaustive events.

Also, A ∩ B = φ, A ∩ C = φ and B ∩ C = φ

Therefore, the events are pair-wise disjoint, i.e., they are mutually exclusive.

Hence, A, B and C form a set of mutually exclusive and exhaustive events.
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Therefore, P(C) = 
3

1

9

3
=

(iv) Clearly the event ‘not blue’ is ‘not C’. We know that P(not C) = 1 –  P(C)

Therefore P(not C) = 
3

2

3

1
1 =−

(v) The event ‘either red or blue’ may be described by the set ‘A or C’

Since, A and C are mutually exclusive events, we have

P(A or C) =  P (A ∪ C) = P(A) + P(C) = 
9

7

3

1

9

4
=+

Example 12 Two students Anil and Ashima appeared in an examination. The probability

that Anil will qualify the examination is 0.05 and that Ashima will qualify the examination

is 0.10. The probability that both will qualify the examination is 0.02. Find the

probability that

(a) Both Anil and Ashima will not qualify the examination.

(b)  Atleast one of them will not qualify the examination and

(c) Only one of them will qualify the examination.

Solution Let E and F denote the events that Anil and Ashima will qualify the examination,

respectively. Given that

P(E) = 0.05, P(F) = 0.10 and P(E ∩ F) = 0.02.

Then

(a) The event ‘both Anil and Ashima will not qualify the examination’ may be

expressed as  E´ ∩ F´.

Since, E´ is ‘not E’, i.e., Anil will not qualify the examination and F´ is ‘not F’, i.e.,

Ashima will not qualify the examination.

Also E´ ∩ F´ = (E ∪ F)´ (by Demorgan's Law)

Now P(E ∪ F) = P(E) + P(F) –  P(E ∩ F)

or P(E ∪ F) = 0.05 + 0.10 –  0.02 = 0.13

Therefore P(E´ ∩ F´) = P(E ∪ F)´ = 1 –  P(E ∪ F) = 1 –  0.13 = 0.87

(b) P (atleast one of them will not qualify)

= 1 –  P(both of them will qualify)

= 1 –  0.02 = 0.98
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(c) The event only one of them will qualify the examination is same as the event

either (Anil will qualify, and Ashima will not qualify) or (Anil will not qualify and Ashima

will qualify) i.e., E ∩ F´ or E´ ∩ F, where E ∩ F´ and E´ ∩ F are mutually exclusive.

Therefore,  P(only one of them will qualify) = P(E ∩ F´ or E´ ∩ F)

= P(E ∩ F´) + P(E´ ∩ F) = P (E) – P(E ∩ F) + P(F) – P (E ∩ F)

= 0.05 – 0.02 + 0.10 – 0.02 = 0.11

Example 13 A committee of two persons is selected from two men and two women.

What is the probability that the committee will have (a) no man? (b) one man? (c) two

men?

Solution The total number of persons = 2 + 2 = 4. Out of these four person, two can

be selected in 4
2C  ways.

(a) No men in the committee of two means there will be two women in the committee.

Out of two women, two can be selected in 2
2C 1=  way.

Therefore ( )
2

2

4
2

C 1 2 1 1
P no man

4 3 6C

× ×
= = =

×

(b) One man in the committee means that there is one woman. One man out of 2

can be selected in 2
1C  ways and one woman out of 2 can be selected in 2

1C  ways.

Together they can be selected in 2 2
1 1C C×  ways.

Therefore ( )
2 2

1 1

4
2

C C 2 2 2
P One man

2 3 3C

× ×
= = =

×

(c) Two men can be selected in 2
2C way.

Hence ( )
2

2

4 4
2 2

C 1 1
P Two men

6C C
= = =

EXERCISE 16.3

1. Which of the following can not be valid assignment of probabilities for outcomes

of sample Space S  = { }1 2 3 4 5 6 7, , , , , ,ω ω ω ω ω ω ω
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Conditional Probability 

Uptill now in probability, we have discussed the methods of finding the 

probability of events. If we have two events from the same sample space, 

does the information about the occurrence of one of the events affect the 

probability of the other event? Let us try to answer this question by taking 

up a random experiment in which the outcomes are equally likely to occur. 

Consider the experiment of tossing three fair coins. The sample space of the 

experiment is 

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} 
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Since the coins are fair, we can assign the probability  
1
8   to each sample point. Let

E be the event ‘at least two heads appear’ and  F be the event ‘first coin shows tail’.
Then

E = {HHH, HHT, HTH, THH}
and F = {THH, THT, TTH, TTT}
Therefore P(E) = P ({HHH}) + P ({HHT}) + P ({HTH}) + P ({THH})

=
1 1 1 1 1
8 8 8 8 2
+ + + =  (Why ?)

and P(F) = P ({THH}) + P ({THT}) + P ({TTH}) + P ({TTT})

=
1 1 1 1 1
8 8 8 8 2
+ + + =

Also E ∩ F = {THH}

with P(E ∩ F) = P({THH}) = 
1
8

Now, suppose we are given that the first coin shows tail, i.e. F occurs, then what is
the probability of occurrence of E? With the information of occurrence of F, we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of E. This information reduces our sample space from the
set S to its subset F for the event E. In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event F.
Now, the sample point of F which is favourable to event E is THH.

Thus, Probability of E considering F as the sample space = 
1
4

,

or Probability of E given that the event F has occurred = 
1
4

This probability of the event E is called the conditional probability of E given
that F has already occurred, and is denoted by P (E|F).

Thus P(E|F) =
1
4

Note that the elements of F which favour the event E are the common elements of
E and F, i.e. the sample points of E ∩ F.
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Thus, we can also write the conditional probability of E given that F has occurred as

P(E|F) =
Numberof elementaryevents favourable to E F

Number of elementaryevents which arefavourable to F
∩

=
(E F)

(F)
n

n
∩

Dividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P(E|F) can also be written as

P(E|F) =

(E F)
P(E F)(S)

(F) P(F)
(S)

n
n
n
n

∩
∩

= ... (1)

Note that (1) is valid only when P(F) ≠ 0 i.e., F ≠ φ (Why?)
Thus, we can define the conditional probability as follows :
Definition 1 If  E and F are two events associated with the same sample space of a
random experiment, the conditional probability of the event E given that F has occurred,
i.e. P (E|F) is given by

P(E|F) =
P(E F)

P(F)
∩

 provided P(F) ≠ 0

13.2.1  Properties of conditional probability

Let E and F be events of a sample space S of an experiment, then we have
Property 1 P (S|F) =  P(F|F) = 1
We know that

P(S|F) =
P(S F) P(F) 1

P(F) P(F)
∩

= =

Also P(F|F) =
P(F F) P(F) 1

P(F) P(F)
∩

= =

Thus P(S|F) = P(F|F) = 1
Property 2 If A and B are any two events of a sample space S and F is an event
of S such that P(F) ≠ 0, then

P((A ∪ B)|F) = P(A|F) + P(B|F) – P((A ∩ B)|F)
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In particular, if A and B are disjoint events, then

P((A∪B)|F) = P(A|F) + P(B|F)
We have

P((A ∪B)|F) =
P[(A B) F]

P(F)
∪ ∩

=
P[(A F) (B F)]

P(F)
∩ ∪ ∩

(by distributive law of union of sets over  intersection)

=
P(A F)+P(B F) – P(A B F)

P(F)
∩ ∩ ∩ ∩

=
P(A F) P(B F) P[(A B) F]

P(F) P(F) P(F)
∩ ∩ ∩ ∩

+ −

= P(A|F) + P(B|F) – P((A ∩B)|F)
When A and B are disjoint events, then

P((A ∩ B)|F) = 0
⇒ P((A ∪ B)|F) = P(A|F) + P(B|F)
Property 3 P (E′|F) = 1 − P (E|F)
From Property 1, we know that P (S|F) = 1
⇒ P(E ∪ E′|F) = 1    since  S = E ∪ E′
⇒ P(E|F) + P (E′|F) = 1     since E and E′ are disjoint events
Thus, P(E′|F) = 1 − P (E|F)
Let us now take up some examples.

Example 1 If P (A) = 
7

13 , P (B) = 
9

13  and P(A ∩ B) = 
4

13 , evaluate P(A|B).

Solution We have 

4
P(A B) 413P(A|B)= 9P(B) 9

13

∩
= =

Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S = {(b, b), (g, b), (b, g), (g, g)}

Let E and F denote the following events :
E : ‘both the children are boys’
F : ‘at least one of the child is a boy’
Then E = {(b,b)} and F = {(b,b), (g,b), (b,g)}
Now E ∩ F = {(b,b)}

Thus P(F) =
3
4

 and P (E ∩ F )= 
1
4

Therefore P (E|F) =

1
P(E F) 14

3P(F) 3
4

∩
= =

Example 3  Ten cards  numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?

Solution Let A be the event ‘the number on the card drawn is even’ and B be the
event ‘the number on the card drawn is  greater than 3’. We have to find P(A|B).
Now, the sample space of the experiment is S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Then A = {2, 4, 6, 8, 10},  B = {4, 5, 6, 7, 8, 9, 10}
and A ∩ B = {4, 6, 8, 10}

Also P(A) =
5 7 4, P(B) = and P(A B)

10 10 10
∩ =

Then P(A|B) =

4
P(A B) 410

7P(B) 7
10

∩
= =

Example 4 In a school, there are 1000 students, out of which 430 are girls. It is known
that out of 430, 10% of the girls study in class XII. What is the probability that a student
chosen randomly studies in Class XII given that the chosen student is a girl?

Solution Let E denote the event that a student chosen randomly studies in Class XII
and F be the event that the randomly chosen student is a girl. We have to find P (E|F).
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Now  P(F) =
430 0.43

1000
=  and  43P(E F)= 0.043

1000
    (Why?)

Then  P(E|F) =
P(E F) 0.043 0.1

P( F) 0.43
∩

= =

Example 5 A die is thrown three times. Events A and B are defined as below:
A : 4 on the third throw
B : 6 on the first and 5 on the second throw
Find the probability of A given that B has already occurred.

Solution The sample space has 216 outcomes.

Now A =
(1,1,4)   (1,2,4) ... (1,6,4) (2,1,4) (2,2,4) ... (2,6,4)
(3,1,4) (3,2,4) ... (3,6,4) (4,1,4) (4,2,4) ...(4,6,4)
(5,1,4) (5,2,4) ... (5,6,4) (6,1,4) (6,2,4) ...(6,6,4)

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

B = {(6,5,1), (6,5,2), (6,5,3), (6,5,4), (6,5,5), (6,5,6)}
and A ∩ B = {(6,5,4)}.

Now P(B) =
6

216
 and  P (A ∩ B) = 

1
216

Then P(A|B) =

1
P(A B) 1216

6P(B) 6
216

∩
= =

Example 6  A die is thrown twice and the sum of the numbers appearing is observed
to be 6. What is the conditional probability that the number 4 has appeared at least
once?

Solution  Let E be the event that ‘number 4 appears at least once’ and F be the event
that ‘the sum of the numbers appearing is 6’.
Then, E = {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (1,4), (2,4), (3,4), (5,4), (6,4)}
and F = {(1,5), (2,4), (3,3), (4,2), (5,1)}

We have P(E) =
11
36 and P(F) = 

5
36

Also E∩F = {(2,4), (4,2)}
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Therefore P(E∩F) =
2

36
Hence, the required probability

P(E|F) =

2
P(E F) 236

5P(F) 5
36

∩
= =

For the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P(E∩F) and P(F) being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it
again but if it shows tail, then throw a die.  Find the
conditional probability of the event that ‘the die shows
a number greater than 4’ given that ‘there is at least
one tail’.

Solution The outcomes of the experiment can be
represented in following diagrammatic manner called
the ‘tree diagram’.

The sample space of the experiment may be
described as

S = {(H,H), (H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}
where (H, H) denotes that both the tosses result into
head and (T, i) denote the first toss result into a tail and
the number i appeared on the die for i = 1,2,3,4,5,6.
Thus, the probabilities assigned to the 8 elementary
events

(H, H), (H, T), (T, 1), (T, 2), (T, 3) (T, 4), (T, 5), (T, 6)

are 
1 1 1 1 1 1 1 1, , , , , , ,
4 4 12 12 12 12 12 12  respectively which  is

clear from the Fig 13.2.

Fig 13.1

Fig 13.2
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Let F be the event that ‘there is at least one tail’ and E be the event ‘the die shows
a number greater than 4’. Then

F = {(H,T), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6)}
E = {(T,5), (T,6)} and E ∩ F = {(T,5), (T,6)}

Now P(F) = P({(H,T)}) + P ({(T,1)}) + P ({(T,2)}) + P ({(T,3)})
+ P ({(T,4)}) + P({(T,5)}) + P({(T,6)})

=
1 1 1 1 1 1 1 3
4 12 12 12 12 12 12 4

      

and P (E ∩ F) = P ({(T,5)}) + P ({(T,6)}) = 
1 1 1

12 12 6
  

Hence P(E|F) =

1
P(E F) 26

3P(F) 9
4

∩
= =

EXERCISE 13.1

1. Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and
P(E ∩ F) = 0.2, find P (E|F) and P(F|E)

2. Compute P(A|B), if P(B) = 0.5 and  P (A ∩ B) = 0.32
3. If  P (A) = 0.8,  P (B) = 0.5 and P (B|A) = 0.4, find

(i) P(A ∩ B) (ii) P(A|B) (iii) P(A ∪ B)

4. Evaluate P(A ∪ B), if 2P(A) = P(B) = 
5

13  and P(A|B) = 
2
5

5. If P(A) = 
6

11  , P(B) = 
5

11  and P(A ∪ B) 7
11

 , find

(i) P(A∩B) (ii) P(A|B) (iii) P(B|A)
Determine P(E|F) in Exercises 6 to 9.

6. A coin is tossed three times, where
(i) E : head on third toss  ,      F : heads on first two tosses
(ii) E : at least two heads  ,     F : at most two heads
(iii) E : at most two tails    ,      F : at least one tail



Random Variables and
Probability Distributions

Random Variables
Suppose that to each point of a sample space we assign a number. We then have a function defined on the sam-
ple space. This function is called a random variable (or stochastic variable) or more precisely a random func-
tion (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random variable
has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S� {HH, HT, TH, TT}. Let X represent
the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1.
Thus, for example, in the case of HH (i.e., 2 heads), X � 2 while for TH (1 head), X � 1. It follows that X is a random
variable.

Sample Point TTTHHTHH

X 0112

Table 2-1

It should be noted that many other random variables could also be defined on this sample space, for example, the
square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a dis-
crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete
random variable.

Discrete Probability Distributions
Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x1, x2,
x3, . . . , arranged in some order. Suppose also that these values are assumed with probabilities given by

P(X � xk) � f (xk) k � 1, 2, . . . (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by 

P(X � x) � f (x) (2)

For x � xk, this reduces to (1) while for other values of x, f (x)� 0.
In general, f(x) is a probability function if

1. f (x)� 0

2.

where the sum in 2 is taken over all possible values of x.

a
x

f (x) � 1

34
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of Example 2.1. Assuming that
the coin is fair, we have

Then

The probability function is thus given by Table 2-2.

P(X � 0) � P(TT)�
1
4

P(X � 1) � P(HT < TH )� P(HT )� P(TH )�
1
4 �

1
4 �

1
2

P(X � 2) � P(HH) �
1
4

P(HH )�
1
4  P(HT )�

1
4  P(TH)�

1
4  P(T T )�

1
4

Distribution Functions for Random Variables
The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

F(x) � P(X� x) (3)

where x is any real number, i.e., � � x � .
The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x)� F(y) if x � y].
2.

3. F(x) is continuous from the right [i.e., for all x].

Distribution Functions for Discrete Random Variables
The distribution function for a discrete random variable X can be obtained from its probability function by noting
that, for all x in (� , ),

(4)

where the sum is taken over all values u taken on by X for which u � x.
If X takes on only a finite number of values x1, x2, . . . , xn, then the distribution function is given by

(5)

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

F(x) �

0 �` � x � 0
1
4 0 �  x � 1
3
4 1 � x � 2
1 2 � x � `

F(x) �

0 �` � x � x1

f (x1) x1 � x � x2

f (x1) � f (x2) x2 � x � x3

(  (
f (x1)�c� f (xn) xn � x � `

F(x) � P(X � x) � a
u�x

f (u)

``

lim
hS0�

F(x � h) � F(x)

lim
xS�`

F(x) � 0;  lim
xS`

F(x) � 1.

``

x 0 1 2

f (x) 1 4 1 2 1 4>>>

Table 2-2
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(b) The graph of F(x) is shown in Fig. 2-1.

The following things about the above distribution function, which are true in general, should be noted.

1. The magnitudes of the jumps at 0, 1, 2 are which are precisely the probabilities in Table 2-2. This fact
enables one to obtain the probability function from the distribution function.

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step function.
The value of the function at an integer is obtained from the higher step; thus the value at 1 is and not . This
is expressed mathematically by stating that the distribution function is continuous from the right at 0, 1, 2.

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the same or
increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically increasing function.

It is clear from the above remarks and the properties of distribution functions that the probability function of
a discrete random variable can be obtained from the distribution function by noting that

(6)

Continuous Random Variables
A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution func-
tion may be represented as

(7)

where the function f (x) has the properties

1. f(x) � 0

2.

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a and b,
is given by

(8)P(a � X � b) � 3
b

a
f (x) dx

3
`

�`

f (x) dx � 1

F(x) � P(X � x) � 3
x

�`
f (u) du  (�` � x � `)

f(x)� F(x) � lim
uSx�

F(u).

1
4

3
4

1
4,

1
2,

1
4

Fig. 2-1



EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height
X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. However, there is a probability greater than zero than X
is between 67.000 . . . inches and 68.500 . . . inches, for example.

A function f (x) that satisfies the above requirements is called a probability function or probability distribu-
tion for a continuous random variable, but it is more often called a probability density function or simply den-
sity function. Any function f (x) satisfying Properties 1 and 2 above will automatically be a density function, and
required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant c such that the function

is a density function, and (b) compute P(1 � X � 2).

(a) Since f (x) satisfies Property 1 if c � 0, it must satisfy Property 2 in order to be a density function. Now

and since this must equal 1, we have c � 1 9.

(b)

In case f (x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal
to any particular value is zero. In such case we can replace either or both of the signs � in (8) by �. Thus, in
Example 2.5,

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to
find P(1 � x � 2).

(a) We have

If x � 0, then F(x) � 0. If 0 � x � 3, then 

If x � 3, then

Thus the required distribution function is

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It should also be noted
that F(x) in this case is continuous.

F(x) � •
0  x � 0

x3>27 0 � x � 3

1  x � 3

F(x) � 3
3

0
f (u) du � 3

x

3
f (u) du � 3

3

0

1
9

u2 du � 3
x

3
 0 du � 1

F(x) � 3
x

0
f  (u)  du � 3

x

0

1
9

u2 du �
x3

27

F(x) � P(X � x) � 3
x

�`

f  (u) du

P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) �
7

27

P(1 � X � 2) � 3
2

1

1
9  x2 dx �

x3

27   

2

1

�
8
27 �

1
27 �

7
27

>

3
`

�`
f (x) dx � 3

3

0
cx2 dx �

cx3

3
  

3

0
� 9c

f (x) �
cx2  0 � x � 3

0   otherwise
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(b) We have

as in Example 2.5.

The probability that X is between x and is given by

(9)

so that if is small, we have approximately

(10)

We also see from (7) on differentiating both sides that

(11)

at all points where f(x) is continuous; i.e., the derivative of the distribution function is the density function.
It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown

that the random variable X with the following distribution function is an example.

In order to obtain (11), we used the basic property

(12)

which is one version of the Fundamental Theorem of Calculus.

Graphical Interpretations
If f(x) is the density function for a random variable X, then we can represent y � f(x) graphically by a curve as
in Fig. 2-2. Since f(x) � 0, the curve cannot fall below the x axis. The entire area bounded by the curve and the
x axis must be 1 because of Property 2 on page 36. Geometrically the probability that X is between a and b, i.e.,
P(a � X � b), is then represented by the area shown shaded, in Fig. 2-2.

The distribution function F(x) � P(X � x) is a monotonically increasing function which increases from 0 to
1 and is represented by a curve as in Fig. 2-3.

d
dx3

x

a
f (u) du � f  (x)

F(x) � µ

0 x � 1

x
2
 1 � x � 2

1 x � 2

dF(x)
dx

� f (x)

P(x � X � x � 
x) � f (x)
x


x

P(x � X � x � 
x) � 3
x�
x

x
f  (u) du

x � 
x

P(1 � X � 2) 5 P(X � 2) � P(X � 1)
5 F(2) � F(1)

5
23

27
�

13

27
�

7
27

Fig. 2-2 Fig. 2-3



4.1 Mean of a Random Variable

In Chapter 1, we discussed the sample mean, which is the arithmetic mean of the
data. Now consider the following. If two coins are tossed 16 times and X is the
number of heads that occur per toss, then the values of X are 0, 1, and 2. Suppose
that the experiment yields no heads, one head, and two heads a total of 4, 7, and 5
times, respectively. The average number of heads per toss of the two coins is then

(0)(4) + (1)(7) + (2)(5)

16
= 1.06.

This is an average value of the data and yet it is not a possible outcome of {0, 1, 2}.
Hence, an average is not necessarily a possible outcome for the experiment. For
instance, a salesman’s average monthly income is not likely to be equal to any of
his monthly paychecks.

Let us now restructure our computation for the average number of heads so as
to have the following equivalent form:

(0)

(
4

16

)
+ (1)

(
7

16

)
+ (2)

(
5

16

)
= 1.06.

The numbers 4/16, 7/16, and 5/16 are the fractions of the total tosses resulting in 0,
1, and 2 heads, respectively. These fractions are also the relative frequencies for the
different values of X in our experiment. In fact, then, we can calculate the mean,
or average, of a set of data by knowing the distinct values that occur and their
relative frequencies, without any knowledge of the total number of observations in
our set of data. Therefore, if 4/16, or 1/4, of the tosses result in no heads, 7/16 of
the tosses result in one head, and 5/16 of the tosses result in two heads, the mean
number of heads per toss would be 1.06 no matter whether the total number of
tosses were 16, 1000, or even 10,000.

This method of relative frequencies is used to calculate the average number of
heads per toss of two coins that we might expect in the long run. We shall refer
to this average value as the mean of the random variable X or the mean of
the probability distribution of X and write it as μx or simply as μ when it is

111
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P (X = 0) = P (TT ) =
1

4
, P (X = 1) = P (TH) + P (HT ) =

1

2
,

and

P (X = 2) = P (HH) =
1

4
,

where a typical element, say TH, indicates that the first toss resulted in a tail
followed by a head on the second toss. Now, these probabilities are just the relative
frequencies for the given events in the long run. Therefore,

μ = E(X) = (0)

(
1

4

)
+ (1)

(
1

2

)
+ (2)

(
1

4

)
= 1.

This result means that a person who tosses 2 coins over and over again will, on the
average, get 1 head per toss.

The method described above for calculating the expected number of heads
per toss of 2 coins suggests that the mean, or expected value, of any discrete
random variable may be obtained by multiplying each of the values x1, x2, . . . , xn

of the random variable X by its corresponding probability f(x1), f(x2), . . . , f(xn)
and summing the products. This is true, however, only if the random variable is
discrete. In the case of continuous random variables, the definition of an expected
value is essentially the same with summations replaced by integrations.

Definition 4.1: Let X be a random variable with probability distribution f(x). The mean, or
expected value, of X is

μ = E(X) =
∑
x

xf(x)

if X is discrete, and

μ = E(X) =

∫ ∞

−∞
xf(x) dx

if X is continuous.

The reader should note that the way to calculate the expected value, or mean,
shown here is different from the way to calculate the sample mean described in
Chapter 1, where the sample mean is obtained by using data. In mathematical
expectation, the expected value is calculated by using the probability distribution.

clear to which random variable we refer. It is also common among statisticians to 
refer to this mean as the mathematical expectation, or the expected value of the 
random variable X, and denote it as E(X).

  Assuming that 1 fair coin was tossed twice, we find that the sample space for 
our experiment is

S = {HH, HT, T H, T T }.
Since the 4 sample points are all equally likely, it follows that



However, the mean is usually understood as a “center” value of the underlying
distribution if we use the expected value, as in Definition 4.1.

Example 4.1: A lot containing 7 components is sampled by a quality inspector; the lot contains
4 good components and 3 defective components. A sample of 3 is taken by the
inspector. Find the expected value of the number of good components in this
sample.

Solution : Let X represent the number of good components in the sample. The probability
distribution of X is

f(x) =

(
4
x

)(
3

3−x

)(
7
3

) , x = 0, 1, 2, 3.

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) =
4/35. Therefore,

μ = E(X) = (0)

(
1

35

)
+ (1)

(
12

35

)
+ (2)

(
18

35

)
+ (3)

(
4

35

)
=

12

7
= 1.7.

Thus, if a sample of size 3 is selected at random over and over again from a lot
of 4 good components and 3 defective components, it will contain, on average, 1.7
good components.

Example 4.2: A salesperson for a medical device company has two appointments on a given day.
At the first appointment, he believes that he has a 70% chance to make the deal,
from which he can earn $1000 commission if successful. On the other hand, he
thinks he only has a 40% chance to make the deal at the second appointment,
from which, if successful, he can make $1500. What is his expected commission
based on his own probability belief? Assume that the appointment results are
independent of each other.

Solution : First, we know that the salesperson, for the two appointments, can have 4 possible
commission totals: $0, $1000, $1500, and $2500. We then need to calculate their
associated probabilities. By independence, we obtain

f($0) = (1− 0.7)(1− 0.4) = 0.18, f($2500) = (0.7)(0.4) = 0.28,

f($1000) = (0.7)(1− 0.4) = 0.42, and f($1500) = (1− 0.7)(0.4) = 0.12.

Therefore, the expected commission for the salesperson is

E(X) = ($0)(0.18) + ($1000)(0.42) + ($1500)(0.12) + ($2500)(0.28)

= $1300.

Examples 4.1 and 4.2 are designed to allow the reader to gain some insight
into what we mean by the expected value of a random variable. In both cases the
random variables are discrete. We follow with an example involving a continuous
random variable, where an engineer is interested in the mean life of a certain
type of electronic device. This is an illustration of a time to failure problem that
occurs often in practice. The expected value of the life of a device is an important
parameter for its evaluation.
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Example 4.3: Let X be the random variable that denotes the life in hours of a certain electronic
device. The probability density function is

f(x) =

{
20,000
x3 , x > 100,

0, elsewhere.

Find the expected life of this type of device.
Solution : Using Definition 4.1, we have

μ = E(X) =

∫ ∞

100

x
20, 000

x3
dx =

∫ ∞

100

20, 000

x2
dx = 200.

Therefore, we can expect this type of device to last, on average, 200 hours.
Now let us consider a new random variable g(X), which depends on X; that

is, each value of g(X) is determined by the value of X. For instance, g(X) might
be X2 or 3X − 1, and whenever X assumes the value 2, g(X) assumes the value
g(2). In particular, if X is a discrete random variable with probability distribution
f(x), for x = −1, 0, 1, 2, and g(X) = X2, then

P [g(X) = 0] = P (X = 0) = f(0),

P [g(X) = 1] = P (X = −1) + P (X = 1) = f(−1) + f(1),

P [g(X) = 4] = P (X = 2) = f(2),

and so the probability distribution of g(X) may be written

g(x) 0 1 4
P [g(X) = g(x)] f(0) f(−1) + f(1) f(2)

By the definition of the expected value of a random variable, we obtain

μg(X) = E[g(x)] = 0f(0) + 1[f(−1) + f(1)] + 4f(2)

= (−1)2f(−1) + (0)2f(0) + (1)2f(1) + (2)2f(2) =
∑
x

g(x)f(x).

This result is generalized in Theorem 4.1 for both discrete and continuous random
variables.

Theorem 4.1: Let X be a random variable with probability distribution f(x). The expected
value of the random variable g(X) is

μg(X) = E[g(X)] =
∑
x

g(x)f(x)

if X is discrete, and

μg(X) = E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx

if X is continuous.
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Example 4.4: Suppose that the number of cars X that pass through a car wash between 4:00
P.M. and 5:00 P.M. on any sunny Friday has the following probability distribution:

x 4 5 6 7 8 9

P (X = x) 1
12

1
12

1
4

1
4

1
6

1
6

Let g(X) = 2X−1 represent the amount of money, in dollars, paid to the attendant
by the manager. Find the attendant’s expected earnings for this particular time
period.

Solution : By Theorem 4.1, the attendant can expect to receive

E[g(X)] = E(2X − 1) =

9∑
x=4

(2x− 1)f(x)

= (7)

(
1

12

)
+ (9)

(
1

12

)
+ (11)

(
1

4

)
+ (13)

(
1

4

)
+ (15)

(
1

6

)
+ (17)

(
1

6

)
= $12.67.

Example 4.5: Let X be a random variable with density function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

Find the expected value of g(X) = 4X + 3.
Solution : By Theorem 4.1, we have

E(4X + 3) =

∫ 2

−1

(4x+ 3)x2

3
dx =

1

3

∫ 2

−1

(4x3 + 3x2) dx = 8.

We shall now extend our concept of mathematical expectation to the case of
two random variables X and Y with joint probability distribution f(x, y).

Definition 4.2: Let X and Y be random variables with joint probability distribution f(x, y). The
mean, or expected value, of the random variable g(X,Y ) is

μg(X,Y ) = E[g(X,Y )] =
∑
x

∑
y

g(x, y)f(x, y)

if X and Y are discrete, and

μg(X,Y ) = E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y) dx dy

if X and Y are continuous.

Generalization of Definition 4.2 for the calculation of mathematical expectations
of functions of several random variables is straightforward.
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Example 4.6: Let X and Y be the random variables with joint probability distribution indicated
in Table 3.1 on page 96. Find the expected value of g(X,Y ) = XY . The table is
reprinted here for convenience.

x Row
f(x, y) 0 1 2 Totals

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

Column Totals 5
14

15
28

3
28 1

Solution : By Definition 4.2, we write

E(XY ) =

2∑
x=0

2∑
y=0

xyf(x, y)

= (0)(0)f(0, 0) + (0)(1)f(0, 1)

+ (1)(0)f(1, 0) + (1)(1)f(1, 1) + (2)(0)f(2, 0)

= f(1, 1) =
3

14
.

Example 4.7: Find E(Y/X) for the density function

f(x, y) =

{
x(1+3y2)

4 , 0 < x < 2, 0 < y < 1,

0, elsewhere.

Solution : We have

E

(
Y

X

)
=

∫ 1

0

∫ 2

0

y(1 + 3y2)

4
dxdy =

∫ 1

0

y + 3y3

2
dy =

5

8
.

Note that if g(X,Y ) = X in Definition 4.2, we have

E(X) =

⎧⎨⎩
∑
x

∑
y
xf(x, y) =

∑
x
xg(x (discrete case)) ,∫∞

−∞
∫∞
−∞ xf(x, y) dy dx =

∫∞
−∞ xg(x) dx (continuous case),

where g(x) is the marginal distribution of X. Therefore, in calculating E(X) over
a two-dimensional space, one may use either the joint probability distribution of
X and Y or the marginal distribution of X. Similarly, we define

E(Y ) =

⎧⎨⎩
∑
y

∑
x
yf(x, y) =

∑
y
yh(y (discrete case)) ,∫∞

−∞
∫∞
−∞ yf(x, y) dxdy =

∫∞
−∞ yh(y) dy (continuous case),

where h(y) is the marginal distribution of the random variable Y .
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4.2 Variance and Covariance of Random Variables

The mean, or expected value, of a random variable X is of special importance in
statistics because it describes where the probability distribution is centered. By
itself, however, the mean does not give an adequate description of the shape of the
distribution. We also need to characterize the variability in the distribution. In
Figure 4.1, we have the histograms of two discrete probability distributions that
have the same mean, μ = 2, but differ considerably in variability, or the dispersion
of their observations about the mean.

0 1 2 3 41 2 3
x

(b)(a)

x

Figure 4.1: Distributions with equal means and unequal dispersions.

The most important measure of variability of a random variable X is obtained
by applying Theorem 4.1 with g(X) = (X − μ)2. The quantity is referred to as
the variance of the random variable X or the variance of the probability
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distribution of X and is denoted by Var(X) or the symbol σ2
X , or simply by σ2

when it is clear to which random variable we refer.

Definition 4.3: Let X be a random variable with probability distribution f(x) and mean μ. The
variance of X is

σ2 = E[(X − μ)2] =
∑
x

(x− μ)2f(x), if X is discrete, and

σ2 = E[(X − μ)2] =

∫ ∞

−∞
(x− μ)2f(x) dx, if X is continuous.

The positive square root of the variance, σ, is called the standard deviation of
X.

The quantity x−μ in Definition 4.3 is called the deviation of an observation
from its mean. Since the deviations are squared and then averaged, σ2 will be much
smaller for a set of x values that are close to μ than it will be for a set of values
that vary considerably from μ.

Example 4.8: Let the random variable X represent the number of automobiles that are used for
official business purposes on any given workday. The probability distribution for
company A [Figure 4.1(a)] is

x 1 2 3
f(x) 0.3 0.4 0.3

and that for company B [Figure 4.1(b)] is

x 0 1 2 3 4
f(x) 0.2 0.1 0.3 0.3 0.1

Show that the variance of the probability distribution for company B is greater
than that for company A.

Solution : For company A, we find that

μA = E(X) = (1)(0.3) + (2)(0.4) + (3)(0.3) = 2.0,

and then

σ2
A =

3∑
x=1

(x− 2)2 = (1− 2)2(0.3) + (2− 2)2(0.4) + (3− 2)2(0.3) = 0.6.

For company B, we have

μB = E(X) = (0)(0.2) + (1)(0.1) + (2)(0.3) + (3)(0.3) + (4)(0.1) = 2.0,

and then

σ2
B =

4∑
x=0

(x− 2)2f(x)

= (0− 2)2(0.2) + (1− 2)2(0.1) + (2− 2)2(0.3)

+ (3− 2)2(0.3) + (4− 2)2(0.1) = 1.6.
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Clearly, the variance of the number of automobiles that are used for official business
purposes is greater for company B than for company A.

An alternative and preferred formula for finding σ2, which often simplifies the
calculations, is stated in the following theorem.

Theorem 4.2: The variance of a random variable X is

σ2 = E(X2)− μ2.

Proof : For the discrete case, we can write

σ2 =
∑
x

(x− μ)2f(x) =
∑
x

(x2 − 2μx+ μ2)f(x)

=
∑
x

x2f(x)− 2μ
∑
x

xf(x) + μ2
∑
x

f(x).

Since μ =
∑
x
xf(x) by definition, and

∑
x
f(x) = 1 for any discrete probability

distribution, it follows that

σ2 =
∑
x

x2f(x)− μ2 = E(X2)− μ2.

For the continuous case the proof is step by step the same, with summations
replaced by integrations.

Example 4.9: Let the random variable X represent the number of defective parts for a machine
when 3 parts are sampled from a production line and tested. The following is the
probability distribution of X.

x 0 1 2 3
f(x) 0.51 0.38 0.10 0.01

Using Theorem 4.2, calculate σ2.
Solution : First, we compute

μ = (0)(0.51) + (1)(0.38) + (2)(0.10) + (3)(0.01) = 0.61.

Now,

E(X2) = (0)(0.51) + (1)(0.38) + (4)(0.10) + (9)(0.01) = 0.87.

Therefore,

σ2 = 0.87− (0.61)2 = 0.4979.

Example 4.10: The weekly demand for a drinking-water product, in thousands of liters, from
a local chain of efficiency stores is a continuous random variable X having the
probability density

f(x) =

{
2(x− 1), 1 < x < 2,

0, elsewhere.

Find the mean and variance of X.
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Solution : Calculating E(X) and E(X2, we have

μ = E(X) = 2

∫ 2

1

x(x− 1) dx =
5

3

and

E(X2) = 2

∫ 2

1

x2(x− 1) dx =
17

6
.

Therefore,

σ2 =
17

6
−
(
5

3

)2

=
1

18
.

At this point, the variance or standard deviation has meaning only when we
compare two or more distributions that have the same units of measurement.
Therefore, we could compare the variances of the distributions of contents, mea-
sured in liters, of bottles of orange juice from two companies, and the larger value
would indicate the company whose product was more variable or less uniform. It
would not be meaningful to compare the variance of a distribution of heights to
the variance of a distribution of aptitude scores. In Section 4.4, we show how the
standard deviation can be used to describe a single distribution of observations.

We shall now extend our concept of the variance of a random variable X to
include random variables related to X. For the random variable g(X), the variance
is denoted by σ2

g(X) and is calculated by means of the following theorem.

Theorem 4.3: Let X be a random variable with probability distribution f(x). The variance of
the random variable g(X) is

σ2
g(X) = E{[g(X)− μg(X)]

2} =
∑
x

[g(x)− μg(X)]
2f(x)

if X is discrete, and

σ2
g(X) = E{[g(X)− μg(X)]

2} =

∫ ∞

−∞
[g(x)− μg(X)]

2f(x) dx

if X is continuous.

Proof : Since g(X) is itself a random variable with mean μg(X) as defined in Theorem 4.1,
it follows from Definition 4.3 that

σ2
g(X) = E{[g(X)− μg(X)]}.

Now, applying Theorem 4.1 again to the random variable [g(X)−μg(X)]
2 completes

the proof.

Example 4.11: Calculate the variance of g(X) = 2X + 3, where X is a random variable with
probability distribution

x 0 1 2 3

f(x) 1
4

1
8

1
2

1
8
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Solution : First, we find the mean of the random variable 2X+3. According to Theorem 4.1,

μ2X+3 = E(2X + 3) =
3∑

x=0

(2x+ 3)f(x) = 6.

Now, using Theorem 4.3, we have

σ2
2X+3 = E{[(2X + 3)− μ2x+3]

2} = E[(2X + 3− 6)2]

= E(4X2 − 12X + 9) =
3∑

x=0

(4x2 − 12x+ 9)f(x) = 4.

Example 4.12: Let X be a random variable having the density function given in Example 4.5 on
page 115. Find the variance of the random variable g(X) = 4X + 3.

Solution : In Example 4.5, we found that μ4X+3 = 8. Now, using Theorem 4.3,

σ2
4X+3 = E{[(4X + 3)− 8]2} = E[(4X − 5)2]

=

∫ 2

−1

(4x− 5)2
x2

3
dx =

1

3

∫ 2

−1

(16x4 − 40x3 + 25x2) dx =
51

5
.

If g(X,Y ) = (X−μX)(Y −μY ), where μX = E(X) and μY = E(Y ), Definition
4.2 yields an expected value called the covariance of X and Y , which we denote
by σXY or Cov(X,Y ).



       

 

 
 

 

 

➢ Statistic: is the science of collecting studies to collect, organize, 

summarize, analyze, and draw conclusions from data. 

◼ A variable is a characteristic or attribute that can assume 

different values. 

◼ Data: are the values that a variable can assume. 

◼ Random Variable: variables whose determined by chance. 

◼ Data set: Collection of data values. 

 

Branches of statistics 

 There are two branches: 

1- Descriptive Statistic: consists of the collection, organization, 

summarization, and presentation of data. For example the 

average age of the student is 14 years. 

 

2- Inferential statistics: consists of generalizing from samples to 

populations, performing estimations and hypothesis testing, 

determining predictions.  For example the relation between 

smoking and lung cancer.  

 

 

 

 

Basic Concepts

Introduce several basic vocabulary words used in studying statistics:

statistic, population, variable.



       

  

 

  

 

 

➢ Discrete variable 

Discrete variable: Assume values that can be counted. 

 Examples:  number of students present or students’ grade level 

 

➢ Continuous variable 

Continuous variable: can assume all values between any two 

specific values. They are obtained by measuring.  

Examples:     height of students in class, weight of students in class, 

time it takes to get to school, or distance traveled between classes. 

 

➢ Computer in Statistics:  

 

  

 
 

 

➢ Population

A population: consists of all subjects (human or otherwise) that are 

being studied.

➢ Sample

A sample: is a group of subjects selected from a population.



       

                            

 

 

 

  

 

When data are collected in original form, they are called raw data. 

For example: row data 

 

 

 

 

A frequency distribution is the organization of raw data in table form, 

using classes and frequencies.   The researches organized the raw 

data into  

 

 

 

 

 

Types of Frequency 
distributions

Categorical 
distribution

Grouped 
distribution

Ungrouped 
distribution

Data Organization

➢ Frequency distribution table



       

 

  

 

Raw Data: A,B,B,AB,O      O,O,B,AB,B   B,B,O,A,O      

A,O,O,O,AB      AB,A,O,B,A 

 

 

 

 

 

 

Grouped Frequency Distribution 

 

◼ Grouped frequency distributions can be used when the range 

of values in the data set is very large. The data must be grouped 

into classes that are more than one unit in width. For example 

the life of boat batteries in hours. 

◼ The smallest and largest possible data values in a class are the 

lower and upper class limits.   Class boundaries separate the 

classes.    

◼ To find a class boundary, average the upper class limit of one 

class and the lower class limit of the next class. 

 

Class Tally Frequency 

(f) 

Percent 

A 
B 
O 

AB 

IIII 

IIII II 

IIII IIII 

IIII 

5 

7 

9 

4 

20 

28 

36 

16 

  n=25 100 

Percent= 100*
n

f
 

Categorical Frequency Distribution

Categorical Frequency Distribution: can be used for data that can be 

placed in specific categories, such as nominal- or ordinal-level data.

Example: Twenty-five  army  indicates  were  given  a  blood  test  to 

determine their blood type.



       

    

  

  

  

   

  

 

 

 

 

 

Class limits

Lower class 
limit

Upper class 
limit

Class 
Boundaries

Lower 
Boundary limit

Upper 
Boundary limit

Class limits Class Boundaries Tally Frequency (f) 

24 - 30 

31 - 37 

38 - 44 

45 - 51 

52 - 58 

59 - 65 

23.5 - 30.5 

30.5 - 37.5 

37.5 - 44.5 

44.5 - 51.5 

51.5 - 58.5 

58.5 - 65.5 

III 

I 

IIII 

IIII IIII 

IIII  I 

I 

3 

1 

5 

9 

6 

1 

Lower 

Class 

Upper 

Class 

Lower 

Boundary 

Upper 

Boundary 

◼ The class width can be calculated by subtracting

 successive lower class limits (or boundaries)

 successive upper class limits (or boundaries)

 upper and lower class boundaries

◼ The class midpoint Xm can be calculated by averaging

 upper and lower class limits (or boundaries)



       

 
 

    

   

  

 

 

- Class limits should have the same decimal place value as the 

data, but the class boundaries should have one additional place 

value and end in a 5. 

For example:  Class limit 7.8 – 8.8 

       Class boundary 7.75 – 8.85 

 

 

 

Class width = lower of second class limit- lower of first class limit 

Or 

Class width = Upper of second class limit- Upper of first class limit 

Class width: 31 – 24 =7 

The class midpoint Xm is found by adding the lower and upper class 

limit (or boundary) and dividing by 2. 

 

 

For Example: 

- In the life of boat batteries example, the values 24 and 30 of

  the first class are the class limits.

- The lower class limit is 24 and the upper class limit is 30.

- The Class boundaries are used to separate the classes. So that

  there are no gaps in the frequency distribution



       

  

 

 

 

• Find the class width for the following class limits: 

• 37 – 44  

• 45 – 52 

• 625 – 654 

• 655 - 684 

• Find the class width for the following class boundaries: 

• 10.5 – 11.5 

• 22.15 – 27.15 

Rules for Classes in Grouped Frequency Distributions 

1. There should be 5-20 classes. 

2. The class width should be an odd number. 

3. The classes must be mutually exclusive. 

Age Better wat to construct  

a frequency distribution 

 

Age 

10 – 20 

20 – 30 

30 – 40 

40 – 50 

10 – 20 

21 – 31 

32 – 42 

43 – 53 

4. The classes must be continuous. 

5. The classes must be exhaustive. 

6. The classes must be equal in width (except in open-ended 

distributions). 

 

• Find the boundaries for the following class limits:



       

 

   

  

  

  

 

 

 

 

  

  

  

  

 

 

 

 

 

       

 

 

 

 

  

 

 

Procedure for Constructing a Grouped Frequency Distribution

- STEP 1 Determine the classes.

✓ Find the highest and lowest value

✓ Find the range

✓ Select the number of classes desired.

✓ Find the width by divided the range by the number of

  classes and rounding up.

✓ Select a starting point (usually the lowest value), add the

  width to get the lower limits.

✓ Find the upper class limits.

✓ Find the boundaries.

- STEP 2 Tally the data.

- STEP 3 Find the frequencies.

- STEP 4 Find the cumulative frequencies by keeping a running

  total of the frequencies.

Constructing a Grouped Frequency Distribution

Example

The following data represent the record high temperatures for each of 

the 50 states.   Construct a grouped frequency distribution for the data 

using 7 classes.

112 100 127   120 134 118   105   110   109   112

110   118   117   116   118   122   114   114   105   109

107   112   114   115   118   117   118   122   106   110

116   108   110   121   113   120   119   111   104   111

120   113   120   117   105   110   118   112   114   114

STEP 1 Determine the classes. Find the class width by dividing the 

range by the number of classes 7.



       

  

  

Range

 

7 
 34

 

7

 

 

 

 

Class 

Limits 
Class Boundaries Frequency 

Cumulative 

Frequency 

100 - 104 

105 - 109 

110 - 114 

115 - 119 

120 - 124 

125 - 129 

130 - 134 

99.5 - 104.5 

104.5 - 109.5 

109.5 - 114.5 

114.5 - 119.5 

119.5 - 124.5 

124.5 - 129.5 

129.5 - 134.5 

2 

8 

18 

13 

7 

1 

1 

 

STEP 4 Find the cumulative frequencies by keeping a running total 

of the frequencies. 

Class 

Limits 
Class Boundaries Frequency 

Cumulative 

Frequency 

100 - 104 

105 - 109 

110 - 114 

115 - 119 

120 - 124 

125 - 129 

130 - 134 

99.5 - 104.5 

104.5 - 109.5 

109.5 - 114.5 

114.5 - 119.5 

119.5 - 124.5 

124.5 - 129.5 

129.5 - 134.5 

2 

8 

18 

13 

7 

1 

1 

2 

10 

28 

41 

48 

49 

50 

Range = High – Low

= 134 – 100 = 34

Width = = = 5

Note: Rounding Rule: Always round up if a remainder.

STEP 2 Tally the data.

STEP 3 Find the frequencies.



       

 

 

 

 

 

 

  

 



       

 

 

 

 

 

 

 

➢ Histogram 

 

 

 

 
 

 

G
ra

p
h

ic
 Histogram

The Frequency Polygon

Ogive

Graphic

The three most commonly used graphs in research are:



       

 

 
 

Histograms use class boundaries and frequencies of the classes 

 

 

 
 

 

 

 

 

 

 

 



       

  
  

 

 

   

 

 
 

 

 
2

104.599.5+
=102        

2

5.0915.041 +
=107 

 
Frequency polygons use class midpoints and frequencies of the classes. 

Class Limits Class Midpoints Frequency 

100 - 104 

105 - 109 

110 - 114 

115 - 119 

120 - 124 

125 - 129 

130 - 134 

102 

107 

112 

117 

122 

127 

132 

2 

8 

18 

13 

7 

1 

1 

 

 

 

 

 

 

A frequency polygon 

is anchored on the 

x-axis before the first  

class and after the 

last class. 

➢ Frequency Polygons
◼ The frequency  polygon is  a graph  that displays the  data  by  using  lines

  that connect points plotted for the frequencies at the class midpoints. The

  frequencies are represented by the heights of the points.

◼ The class midpoints are represented on the horizontal axis.

Construct a frequency polygon to represent the data for the record high 

temperatures for each of the 50 states.
Step 1: find the midpoints of each class (Recall that midpoints are found by adding the 

upper and lower boundaries and dividing by 2).



       

  

 

 

   

 

 

Class 

Limits 

Class 

Boundaries 
Frequency 

Cumulative 

Frequency 

100 - 104 

105 - 109 

110 - 114 

115 - 119 

120 - 124 

125 - 129 

130 - 134 

  99.5 - 104.5 

104.5 - 109.5 

109.5 - 114.5 

114.5 - 119.5 

119.5 - 124.5 

124.5 - 129.5 

129.5 - 134.5 

2 

8 

18 

13 

7 

1 

1 

2 

10 

28 

41 

48 

49 

50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 

Boundaries 

Cumulative 

Frequency 

Less than 104.5 

Less than 109.5 

Less than 114.5 

Less than 119.5 

Less than 124.5 

Less than 129.5 

Less than 134.5 

2 

10 

28 

41 

48 

49 

50 

➢ Ogive

◼ The ogive is a graph that represents the cumulative frequencies for

  the classes in a frequency distribution.

◼ The upper class boundaries are represented on the horizontal axis.

Construct an ogive to represent the data for the record high temperatures

for each of the 50 states.

Ogives  use  upper  class  boundaries  and  cumulative  frequencies  of  the 

classes.



       

  

  

 

  
 

 

 

City                 Number 

Atlanta               6832 

Baltimore           2904 

Chicago              6680 

St. Louis             1485 

Washington        5518 

 

Solution 

Step 1 Arrange the data from the largest to smallest according to frequency. 

City              Number 

Atlanta           6832 

Chicago         6680 

Washington   5518 

Baltimore       2904 

St. Louis        1485 

Step 2 Draw and label the x and y axes. 

Step 3 Draw the bars corresponding to the frequencies. The graph shows that 

the number of homeless people is about the same for Atlanta and Chicago and 

a lot less for Baltimore and St. Louis. 

 

 

 

 

 

 

 

➢ Pareto charts

When  the  variable  displayed  on  the  horizontal  axis  is  qualitative  or 

categorical, a Pareto chart can also be used to represent the data.

A Pareto  chart is  used  to  represent  a  frequency  distribution  for  a 

categorical variable, and the frequencies are displayed by the heights of 

vertical bars, which are arranged in order from highest to lowest.

The  data  shown  here  consist  of  the  number  of  homeless  people  for  a 

sample  of selected  cities.  Construct  and  analyze  a  Pareto  chart  for  the 

data.



       

  

 

Pie graphs are used extensively in statistics. The purpose of the pie graph is to 

show the relationship of the parts to the whole by visually comparing the sizes 

of the sections. Percentages or proportions can be used. The variable is nominal 

or categorical. 

A pie graph is a circle that is divided into sections or wedges according to the 

percentage of frequencies in each category of the distribution. 

 

This frequency distribution shows the number of pounds of each snack food 

eaten during the Super Bowl. Construct a pie graph for the data. 

 

Snack           Pounds (frequency) 

Potato chips       11.2 million 

Tortilla chips      8.2 million 

Pretzels               4.3 million 

Popcorn              3.8 million 

Snack nuts          2.5 million 

            Total n = 30.0 million 

Solution 

Step 1 Since there are 360_ in a circle, the frequency for each class must be 

converted into a proportional part of the circle. This conversion is done by 

using the formula     Degrees = 360•
n

f
° 

where f _ frequency for each class and n _ sum of the frequencies. Hence, the 

following conversions are obtained. The degrees should sum to 360_.* 
 

 

 

 

 

 

 

 

 

 

➢ The Pie Graph



       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



       

 

 

Data Description  

3-1 Measures of Central Tendency 

3-2 Measures of Variation 

Measures of Central Tendency: Summarize data, using measures of central 

tendency, such as the mean, median, mode, and midrange. 

Measures of Variation: Describe data, using measures of variation, such as the 

range, variance, and standard deviation. 

Measures of Central Tendency 

A statistic is a characteristic or 

measure obtained by using the 

data values from a sample. 

A parameter is a characteristic 

or measure obtained by using 

all the data values for a 

specific population. 

 

Mean 

• The mean is the quotient of the sum of the values and the total number 

of values.   

• The symbol X is used for sample mean. 

1 2 3 n
XX X X X

X
n n

+ + + +
= =


 

• For a population, the Greek letter μ (mu) is used for the mean. 

1 2 3 N
XX X X X

N N


+ + + +
= =


 

 



       

 

Examples  

Days off per Year 

 

 

 

 

 

 



       

 

 

        

 

Finding the Mean for Grouped Data 

 

Step 1 Make a table as shown 

 

Step 2 Find the midpoints of each class and place them in column C. 

Step 3 multiply the frequency by the midpoint for each class, and place the 

product in column D. 

Step 4 Find the sum of column D. 

Step 5 Divide the sum obtained in column D by the sum of frequencies obtained 

in column B. 

The formula for the mean is 

 

 

 

 

 

Police Incidents

The number of calls that a local police department responded to for a sample of 

9 months is shown. Find the mean.

475, 447, 440, 761, 993, 1052, 783, 671, 621



       

 

 

 

 

  

 

Step 2 Find the midpoints of each class and enter them in column C

 
Step 3 For each class, multiply the frequency by the midpoint, as shown, and 

place the product in column D. 

1 * 8 =8    2 * 13 = 26        etc. The completed table is shown here. 

 

 

Step 4 Find the sum of column D. 

Step 5 Divide the sum by n to get the mean. 

 

Miles Run per Week

Using the frequency distribution for Example below, find the mean. The data 

represent the number of miles run during one week for a sample of 20 runners.

Solution

The procedure for finding the mean for grouped data is given here.

Step 1 Make a table as shown.



       

 

 

 

 

 

 

  

  

 

 

 

  

 

 

 

 

 

 

Tornadoes in the U.S. 

The number of tornadoes that have occurred in the United States over an 8-year 

period follows. Find the median. 

684, 764, 656, 702, 856, 1133, 1132, 1303 

Find the average of the two middle values. 

656, 684, 702, 764, 856, 1132, 1133, 1303 

764 856 1620
MD 810

2 2

+
= = =

 

The median is 157 rooms. 

The median number of tornadoes is 810. 

MEDIAN

The median is the midpoint of the data array.  The symbol for the median is 

MD.

Finding the median

Step 1 Arrange the data values in ascending order.

Step 2 determine the number of values in the data set.

Step 3 a. If n is odd, select the middle data value as the median.

b. If n is even, find the mean of the two middle values. That is, add 

them and divide the sum by 2.

Examples

Police Officers Killed

The number of police officers killed in the line of duty over the last 11 years is 

shown. Find the median.

177 153 122 141 189 155 162 165 149 157 240

Sort in ascending order

122, 141, 149, 153, 155, 157, 162, 165, 177, 189, 240

Select the middle value.

MD = 157



       

 

    

  

 

 

 

 

 

 

 

  

 

 

Licensed Nuclear Reactors  

The data show the number of licensed nuclear reactors in the United States for 

a recent 15-year period. Find the mode. 

 

 

104 and 109 both occur the most.  The data set is said to be bimodal. 

 

 

 

 

 

 

 

 

 

The mode is 10 million dollars. 

104 104 104 104 104 107 109 109 109 110 

109 111 112 111 109 

The modes are 104 and 109. 

The Mode

• The mode is the value that occurs most often in a data set.

• It is sometimes said to be the most typical case.

• There may be no mode, one mode (unimodal), two modes (bimodal), or

  many modes (multimodal).

Example

NFL Signing Bonuses

Find the mode of the signing bonuses of eight NFL players for a specific 

year.  The bonuses in millions of dollars are

18.0, 14.0, 34.5, 10, 11.3, 10, 12.4, 10

You may find it easier to sort first.

10, 10, 10, 11.3, 12.4, 14.0, 18.0, 34.5

Select the value that occurs the most.



       

 

 

   

Area Boat Registrations  

The data show the number of boats registered for six counties in southwestern 

Pennsylvania. Find the mode. 

    

Since the category with the highest frequency is Westmoreland, the most typical 

case is Westmoreland. Hence, the mode is Westmoreland. 

 

 

 

 

 

 

The modal class is 

20.5 – 25.5. 

The mode, the midpoint 

of the modal class, is  

23 miles per week. 

Miles Run per Week

Find the modal class for the frequency distribution of miles that 20 runners 

ran in one week.



15.1 Overview

In earlier classes, you have studied measures of central tendency such as mean, mode,

median of ungrouped and grouped data. In addition to these measures, we often need

to calculate a second type of measure called a measure of dispersion  which meas-

ures the variation in the observations about the middle value– mean or median etc.

This chapter is concerned with some important measures of dispersion such as

mean deviation, variance, standard deviation etc., and finally analysis of frequency

distributions.

15.1.1  Measures of dispersion

(a) RangeThe measure of dispersion which is easiest to understand and easiest to

calculate is the range. Range is defined as:

Range = Largest observation – Smallest observation

(b) Mean Deviation

(i) Mean deviation for ungrouped data:

For n observation x
1
, x

2
, ..., x

n
, the mean deviation about their mean x  is

given by

M.D ( x ) =

| |ix x

n

− 
(1)

Mean deviation about their median M is given by

M.D (M) =

| M |ix

n

− 
(2)

(ii) Mean deviation for discrete frequency distribution

Let the given data consist of  discrete observations x
1
, x

2
, ... , x

n
 occurring with

frequencies f
1
, f

2
, ... , f

n
, respectively. In this case
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M.D ( x ) =

| | | |

N

i i i i

i

f x x f x x

f

− −
=

  
 (3)

M.D (M) =
| M |

N

i if x − 
(4)

where N = if .

(iii) Mean deviation for continuous frequency distribution (Grouped data).

M.D ( x ) =
| |

N

i if x x− 
(5)

M.D (M) =
| M |

N

i if x − 
(6)

where x
i
 are the midpoints of the classes, x  and M are, respectively, the mean

and median of the distribution.

(c) Variance : Let x
1
, x

2
, ..., x

n
 be n observations with x as the mean. The variance,

denoted by σ2, is given by

σ2 =
21

( )ix x
n

− (7)

(d) Standard Deviation: If σ2 is the variance, then σ, is called the standard deviation,

is given by

σ =
21

( )ix x
n

− 
(8)

(e) Standard deviation for a discrete frequency distribution is given by

σ =
21

( )
N

i if x x− (9)

where f
i
’s are the frequencies of x

i
’ s and N = 

1

n

i

i

f
=

 .

(f) Standard deviation of a continuous frequency distribution (grouped data)

is given by
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σ =
21

( )
N

i if x x− (10)

where x
i
 are the midpoints of the classes and f

i
  their respective frequencies.

Formula (10) is same as

σ =
1

N
 ( )

22N i i i if x f x−  (11)

(g) Another formula for standard deviation :

σ
x
 =

N

h
 ( )

22N i i i if y f y−  (12)

where h is the width of class intervals and y
i
 = 

Aix

h

−
and A is the assumed

mean.

15.1.2  Coefficient of variation It is sometimes useful to describe variability by

expressing the standard deviation as a proportion of mean, usually a percentage. The

formula for it as a percentage is

Coefficient of variation =
Standard deviation

100
Mean

×

15.2  Solved Examples

Short Answer Type

Example 1  Find the mean deviation about the mean of the following data:

Size (x): 1 3 5 7 9 11 13 15

Frequency (f): 3 3 4 14 7 4 3 4

Solution  Mean = x  =
3 9 20 98 63 44 39 60

42

i i

i

f x

f

+ + + + + + +
=

 
  = 

336
8

42
=

M.D. ( x ) =
| | 3(7) 3(5) 4(3) 14(1) 7(1) 4(3) 3(5) 4(7)

42

i i

i

f x x

f

− + + + + + + +
=
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=
21 15 12 14 7 12 15 28 62

42 21

+ + + + + + +
=  = 2.95

Example 2  Find the variance and standard deviation for the following data:

57, 64, 43, 67, 49, 59, 44, 47, 61, 59

Solution  Mean ( x ) =
57 64 43 67 49 59 61 59 44 47 550

55
10 10

+ + + + + + + + +
= =

Variance (σ2) =

2( )ix x

n

− 

= 

2 2 2 2 2 2 2 2 2 2
2 9 12 12 6 4 6 4 11 8

10

+ + + + + + + + +

=
662

66.2
10
=

Standard deviation (σ) = 2
66.2 8.13σ = =

Example 3  Show that the two formulae for the standard deviation of ungrouped data.

2
( )ix x

n

−
σ =

 
and

2

2ix
x

n
σ′ = −

 

are equivalent.

Solution  We have
2

( )ix x−  =
2 2

( 2 )i ix x x x− + 

=
2 22i ix x x x+ − +   

= ( )22
2 1i ix x x x− +   

=
2 2

2 ( )ix x n x n x− + 

=
2 2
ix n x− 
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Dividing both sides by n and taking their square root, we get σ = σ′.

Example 4  Calculate variance of the following data :

Class interval Frequency

4 - 8 3

8 - 12 6

12 - 16 4

16 - 20 7

Mean ( )x  =
3 6 6 10 4 14 7 18

20

i i

i

f x

f

× + × + × + ×
=

 
  = 13

Solution  Variance (σ2) = 

2 2 2 2 2( ) 3( 7) 6( 3) 4(1) 7(5)

20

i i

i

f x x

f

− − + − + +
=

 
 

                           =  
147 54 4 175

19
20

+ + +
=

Long Answer Type

Example 5  Calculate mean, variation and standard deviation of the following frequency

distribution:

Classes Frequency

1 - 10 11

10 - 20 29

20 - 30 18

30 - 40 4

40 - 50 5

50 - 60 3
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0.1 Bernoulli Distribution
This distribution describes a natural phenomenon or a mechanical process in which you
expect a particular event to appear or not.

If the outcome of the random experiment is either a success with a fixed probability p or
a failure with a probability q = 1 − p and that the random variable X takes either the
value 1 in the case of success or a value of zero in the case of failure, then the distribution
of X is the Bernoulli distribution.

That is, X =
{

1 when the event appears
0 when the event does not appear

and

f(x) =
{
p x = 1
1− p = q x = 0

This function can be written in another form (Bernoulli distribution).

f(x) = P (X = x) =
{
pxq1−x x = 0, 1, 0 < p < 1, q = 1− p
0 o.w.

Where X ∼ Ber(p); p is the parameter of the distribution.

1
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Exercise 1 :

1. Prove that the Bernoulli distribution is a probability mass function.

2. Find the

• Average.

• Variance.

• Moment generating function.

• Cumulative distribution function.

Solution:

1. To prove that the Bernoulli distribution is a probability mass function.

Since 0 < p, q < 1 then 0 < pxq1−x < 1, which yields 0 < f(x) < 1 when x = 0, 1
and since f(x) = 0 for otherwise (x 6= 0, 1 ). Then 0 ≤ f(x) < 1.

Now we want to prove ∑
X
f(x) = 1.

∑
X
f(x) =

1∑
X=0

pXq1−X = p0q1 + p1q0 = q + p = 1− p+ p = 1

Hence, f is a p.m.f of a r.v. X.

2. To find the Average, Variance, Moment generating function for this distribution
and Cumulative distribution function.

• µ = E(X) = ∑
X
Xf(x) =

1∑
X=0

X · pXq1−X

= 0 · p0q1 + 1 · p1q0 = p

µ = E(X) = p

• σ2X = E(X2)− [E(X)]2.

E(X2) =
1∑

X=0
X2 · pXq1−X = 0 · p0q1 + 1 · p1q0 = p

2
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Note that the moments for any r is p since

µr = E(Xr) =
1∑

X=0
Xr · pXq1−X = 0 · p0q1 + 1 · p1q0 = p

σ2X = E(X2)− [E(X)]2 = p− p2 = p(1− p) = pq.

σ2X = pq.

• MX(t) = E(etX) = ∑
X
etX · f(x)

MX(t) = E(etX) =
1∑

X=0
etX · pXq1−X

MX(t) = E(etX) = e0 · p0q1 + et · p1q0 = pet + q.

MX(t) = pet + q

• C.D.F of X is

FX(x) = P (X ≤ x) =


0 x < 0
q 0 ≤ x < 1

1 x ≥ 1

Example 1 One dice was thrown. Let the random variable X be the number 6 shown
by the dice face. Find:

1. p.m.f of X.

2. c.d.f of X.

3. MX(t).

4. E(X).

5. V (X).

6. P (−3 ≤ X < 0).

7. P (−2 ≤ X < 1).

8. P (X ≥ 3).

3
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9. P (0 ≤ X < 2).

Solution:

If the number 6 appears, then X = 1 (success).

If the number 1, 2, 3, 4, or 5 appear, then X = 0 (failure).

Hence, X ∼ Ber(p) with p = 1
6 and q = 1− p = 5

6

f(x) = P (X = x) =
{

(1
6)x(5

6)1−x x = 0, 1
0 o.w.

• C.D.F of X is

FX(x) = P (X ≤ x) =


0 x < 0
5
6 0 ≤ x < 1

1 x ≥ 1

• MX(t) = pet + q = 1
6e

t + 5
6 = 5+et

6 .

• E(X) = p = 1
6 .

• V (X) = σ2X = E(X2)− [E(X)]2 = p · q = 1
6 ·

5
6 = 5

36 .

• P (−3 ≤ X < 0) = 0.

• P (0 ≤ X < 2) = p(X = 0) + p(X = 1) = 5
6 + 1

6 = 1.

• P (−2 ≤ X < 1) = p(X = −2) + p(X = −1) + p(X = 0)

= 0 + 0 + 5
6 = 5

6 .

• P (X ≥ 3) = 0.

4
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 The Binomial Distribution 
 
A. It would be very tedious if, every time we had a slightly different problem, we had to 
determine the probability distributions from scratch.  Luckily, there are enough similarities 
between certain types, or families, of experiments, to make it possible to develop formulas 
representing their general characteristics. 
 
For example, many experiments share the common element that their outcomes can be classified 
into one of two events, e.g. a coin can come up heads or tails; a child can be male or female; a 
person can die or not die; a person can be employed or unemployed.  These outcomes are often 
labeled as “success” or “failure.” Note that there is no connotation of “goodness” here - for 
example, when looking at births, the statistician might label the birth of a boy as a “success” and 
the birth of a girl as a “failure,” but the parents wouldn’t necessarily see things that way.  The 
usual notation is 

 
p = probability of success, 
q = probability of failure = 1 - p. 
 

Note that p + q = 1.  In statistical terms, A Bernoulli trial is each repetition of an experiment 
involving only 2 outcomes. 
 
We are often interested in the result of independent, repeated bernoulli trials, i.e. the number of 
successes in repeated trials.   
 

1. independent - the result of one trial does not affect the result of another trial. 
 
2. repeated - conditions are the same for each trial, i.e. p and q remain constant 

across trials.  Hayes refers to this as a stationary process.  If p and q can change from trial to trial, 
the process is nonstationary.  The term identically distributed is also often used. 
 
B. A binomial distribution gives us the probabilities associated with independent, repeated 
Bernoulli trials.  In a binomial distribution the probabilities of interest are those of receiving 
a certain number of successes, r, in n independent trials each having only two possible 
outcomes and the same probability, p, of success.  So, for example, using a binomial 
distribution, we can determine the probability of getting 4 heads in 10 coin tosses. 
 
How does the binomial distribution do this?  Basically, a two part process is involved.  First, we 
have to determine the probability of one possible way the event can occur, and then determine 
the number of different ways the event can occur.  That is, 
 
P(Event) = (Number of ways event can occur) * P(One occurrence). 
 
Suppose, for example, we want to find the probability of getting 4 heads in 10 tosses.  In this 
case, we’ll call getting a heads a “success.” Also, in this case, n = 10, the number of successes is 
r = 4, and the number of failures (tails) is n – r = 10 – 4 = 6.  One way this can occur is if the first 
4 tosses are heads and the last 6 are tails, i.e. 
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S S S S F F F F F F 

 
The likelihood of this occurring is  
 

P(S) * P(S) * P(S) * P(S) * P(F) * P(F) * P(F) * P(F) * P(F) * P(F) 
 
More generally, if p = probability of success and q = 1 – p = probability of failure, the 
probability of a specific sequence of outcomes where there are r successes and n-r failures is 

rnq −rp  
So, in this particular case, p = q = .5, r = 4, n-r = 6, so the probability of 4 straight heads followed 
by 6 straight tails is .54.56 = 0.0009765625 (or 1 out of 1024). 
 
Of course, this is just one of many ways that you can get 4 heads; further, because the repeated 
trials are all independent and identically distributed, each way of getting 4 heads is equally 
likely, e.g. the sequence S S S S F F F F F F is just as likely as the sequence S F S F F S F F S F.  
So, we also need to know how many different combinations produce 4 heads. 
 
Well, we could just write them all out…but life will be much simpler if we take advantage of 
two counting rules: 
 

1. The number of different ways that N distinct things may be arranged in 
order is  

N! = (1)(2)(3)...(N-1)(N), (where 0! = 1).   
 

An arrangement in order is called a permutation, so that the total number of permutations 
of N objects is N!.  The symbol N! is called N factorial.   
 

EXAMPLE.  Rank candidates A, B, and C in order.  The possible permutations are: 
ABC ACB BAC BCA CBA CAB.  Hence, there are 6 possible orderings.  Note that 3! = 
(1)(2)(3) = 6. 

 

NOTE: Appendix E, Table 6, p. 19 contains a Table of the factorials for the integers 1 
through 50.  For example, 12! = 4.79002 * 108. (Or see Hayes Table 8, p. 947).  Your calculator 
may have a factorial function labeled something like x! 

 
2. The total number of ways of selecting r distinct combinations of N objects, 
irrespective of order, is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
rN

N
 = 

r

N
 = 

r)! - (Nr!
N!

 

 
We refer to this as “N choose r.” Sometimes the number of combinations is known as a 

binomial coefficient, and sometimes the notation NCr is used.  So, in the present example, 
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210
24

5040

1*2*3*4

7*8*9*10

4104

!10

4

10
===

−
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)!(!r)! - (Nr!

N!
 

r

N
  

 
Note that, for 10!, I stopped once I got to 7; and I didn’t write out 6! in the denominator. This is 
because both numerator and denominator have 6! in them, so they cancel out.  So, there are 210 
ways you can toss a coin 10 times and get 4 heads. 
 

EXAMPLE.  Candidates A, B, C and D are running for office.  Vote for two. 
 
The possible choices are: AB AC AD BC BD CD, i.e. there are 6 possible combinations.  

Confirming this with the above formula, we get 
 

6 = 
2

12
 = 

1)(2)(1)(2)(
1)(4)(3)(2)(

 = 
2)! - (42!

4!
 = 

2

4
 = 

r)! - (Nr!
N!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
EXAMPLE.  There are 100 applicants for 3 job openings.  The number of possible 

combinations is 

161,700 = 
6

970,200
 = 

3!97!
100!

 =  = 
r)! - (Nr!

N!
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
2*3

98*99*100

3

100
 

 
Again, note that, if you didn’t take advantage of 97! appearing on both top and bottom, 

you’d have a much lengthier calculation. 
 

See Appendix E, Table 7, page 20 for NCr values for various values of N and r. (Or see 
Hayes, Appendix E, Table IX, p. 948).  Your calculator may have a function labeled nCr or 
something similar. 

 
C. So putting everything together now: we know that any specific sequence that produces 4 
heads in 10 tosses has a probability of 0.0009765625.  Further, we now know that there are 210 
such sequences.  Ergo, the probability of 4 heads in 10 tosses is 210 * 0.0009765625 = 
0.205078125. 
 
We can now write out the complete formula for the binomial distribution: 
 

In sampling from a stationary Bernoulli process, with the probability of success 
equal to p, the probability of observing exactly r successes in N independent trials is 

 

qp 
r)! - (Nr!

N!
 = qp 

r

N r-Nrr-Nr

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
Once again, N choose r tells you the number of sequences that will produce r successes in N 
tries, while prqN-r tells you what the probability of each individual sequence is. 
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To put it another way, the random variable X in a binomial distribution can be defined as 
follows: 
 

Let Xi = 1 if the ith bernoulli trial is successful, 0 otherwise.  Then, 
 

X = ΣXi, where the Xi’s are independent and identically distributed (iid). 
 
That is, X = the # of successes. Hence, Any random variable X with probability function 
given by  
 

N ..., 2, 1, 0, = X   ,qp 
r)! - (Nr!

N!
 = qp 

r

N
 = p) N, r; = p(X r-Nrr-Nr

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

 
is said to have a binomial distribution with parameters N and p. 
 
EXAMPLE.  In each of 4 races, the Democrats have a 60% chance of winning.  Assuming that 
the races are independent of each other, what is the probability that: 

a. The Democrats will win 0 races, 1 race, 2 races, 3 races, or all 4 races? 
b. The Democrats will win at least 1 race 
c. The Democrats will win a majority of the races 

 
SOLUTION.  Let X equal the number of races the Democrats win. 
 

a. Using the formula for the binomial distribution, 
 

.1296 = 60. = 40.60. 
4)! - (44!

4!
 = qp

4

4

.3456, = 40.60.*  4 = 40.60. 
3)! - (43!

4!
 = qp

3

4

.3456, = 40.60.*  6 = 40.60. 
2)! - (42!

4!
 = qp

2

4

.1536,= 40.* .60*  4 = 40.60. 
1)! - (41!

4!
 = qp 

1

4

.0256, = 40. = 40.60. 
0)! - (40!

4!
 = qp 
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b. P(at least 1) = P(X ≥ 1) = 1 - P(none) = 1 - P(0) = .9744.  Or, P(1) + P(2) + P(3) + 

P(4) = .9744. 
 
c. P(Democrats will win a majority) = P(X ≥ 3) = P(3) + P(4) = .3456 + .1296 = 

.4752. 
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EXAMPLE.  In a family of 11 children, what is the probability that there will be more boys than 
girls?  Solve this problem WITHOUT using the complements rule. 
 
SOLUTION.  You could go through the same tedious process described above, which is what 
most students did when I first asked this question on an exam.  You would compute P(6), P(7), 
P(8), P(9), P(10), and P(11).  
 

Or, you can look at Appendix E, Table II (or Hays pp. 927-931).  Here, both Hayes and I list 
binomial probabilities for values of N and r from 1 through 20, and for values of p that range 
from .05 through .50.  

 
Thus, on page E-5, we see that for N = 11 and p = .50, 
 

P(6) + P(7) + P(8) + P(9) + P(10) + P(11) = .2256 + .1611 + .0806 + .0269 + .0054 + 
.0005 = .50. 
 

NOTE:  Understanding the tables in Appendix E can make things a lot simpler for you! 
 

EXAMPLE.  [WE MAY SKIP THIS EXAMPLE IF WE RUN SHORT OF TIME, BUT YOU SHOULD 
STILL GO OVER IT AND MAKE SURE YOU UNDERSTAND IT] 
 
Use Appendix E, Table II, to once again solve this problem:  In each of 4 races, the Democrats have a 
60% chance of winning.  Assuming that the races are independent of each other, what is the probability 
that: 

a. The Democrats will win 0 races, 1 race, 2 races, 3 races, or all 4 races? 
b. The Democrats will win at least 1 race 
c. The Democrats will win a majority of the races 

 
SOLUTION.  It may seem like you can’t do this, since the table doesn’t list p = .60.  However, all you 
have to do is redefine success and failure. Let success = P(opponents win a race) = .40.  The question can 
then be recast as finding the probability that 

a. The opponents will win 4 races, 3 races, 2 races, 1 race, or none of the races? 
b. The opponents will win 0, 1, 2, or 3 races; or, the opponents will not win all the races 
c. The opponents will not win a majority of the races 

 
We therefore look at page E-4 (or Hayes, p. 927), N = 4 and p = .40, and find that  
a. P(4) = .0256, P(3) = .1536, P(2) = .3456, P(1) = .3456, and P(0) = .1296. 
b. P(0) + P(1) + P(2) + P(3) = 1 - P(4) = .9744 
c. P(1) + P(0) = .3456 + .1296 = .4752 
 
In general, for p > .50: To use Table II, substitute 1 - p for p, and substitute N - r for r.  Thus, for 

p = .60 and N = 4, the probability of 1 success can be found by looking up p = .40 and r = 3. 

 
D. Mean of the binomial distribution.  Recall that, for any discrete random variable, 

E(X) = Σxp(x).  Therefore, E(Xi) = Σxp(x) = 0 * (1 - p) + 1 * p = p, that is, the mean of any 
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