Python Lists 2 semester Lecture 1

Python Lists

mylist = ["apple", "banana”, "cherry"]
List Items

List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [8], the second item has
index [1] etc.

Ordered

When we say that lists are ordered, it means that the items have a defined
order, and that order will not change.

If you add new items to a list, the new items will be placed at the end of the
list.

Note: There are some list methods that will change the order, but in general:
the order of the items will not change.

Changeable

The list is changeable, meaning that we can change, add, and remove items
in a list after it has been created.

Allow Duplicates

Since lists are indexed, lists can have items with the same value:

Example

Lists allow duplicate values:

thislist = ["apple", "banana", "cherry"”, "apple", "cherry"]
print{thislist)

Output

[‘apple’, 'banana’, 'cherry’, 'apple’, ‘cherry']

Python Lists

List Length

2 semester Lecture 1

To determine how many items a list has, use the len() function:

Example

Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]
print(len{thislist)}

Output

3

List Items - Data Types

List items can be of any data type:

Example

String, int and boolean data types:

1listl = ["apple"”, "banana", "cherry"]
l1std = [1; 5 &5 8 3]

1ist3 = [True, False, False]
Example

A list with strings, integers and boolean values:

listl = ["abc", 34, True, 48, "male"]

Python Lists 2 semester Lecture 1

Python - Access List Items

Access Iltems

List items are indexed and you can access them by referring to the index
number:

Example

Print the second item of the list:

thislist = ["apple", "banana", "cherry"]
print(thislist[1])

Output

banana

Note: The first item has index 0.

Negative Indexing

Negative indexing means start from the end

-1 refers to the last item, -2 refers to the second last item etc,

Example

Print the last item of the list;

thislist = ["apple"”, "banana", “"cherry"]
print(thislist[-1])

Output

Cherry

Python Lists 2 semester Lecture 1

Range of Indexes

You can specify a range of indexes by specifying where to start and where to
end the range.

When specifying a range, the return value will be a new list with the specified
items.

Example

Return the third, fourth, and fifth item:
thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon",

"mango"]
print{thislist[2:5])

Output

['cherry', 'orange’, 'kiwi']

Note: The search will start at index 2 (included) and end at index 5 (not
included).

Remember that the first item has index 0.

By leaving out the start value, the range will start at the first item:

Example

This example returns the items from the beginning to, but NOT including,
"kiwi":
thislist =

["apple”, "banana”™, "cherry”, "orange", "kiwi", "melon”, "mango"]
print{thislist[:4])

Output

['apple’, 'banana’, 'cherry’, ‘orange']

Python Lists 2 semester Lecture 1

By leaving out the end value, the range will go on to the end of the list:

Example

This example returns the items from "cherry"” to the end:

thislist =
["apple”, "banana", "cherry", "orange", "kiwi", "melon”, "mango"]
print{thislist[2:])

Output

["cherry', 'orange', 'kiwi', 'melon', 'mango']

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the
list:

Example

This example returns the items from "orange" (-4) to, but NOT including "mango’
(=1}
thislist =

["apple", "banana", “"cherry", "orange", "kiwi", "melan", "mango"]
print{thislist[-4:-1])

Output
['orange’, 'kiwi', 'melon']

Check if Item Exists

To determine if a specified item is present in a list use the in keyword:

Example

Check if "apple" is present in the list:
thislist = ["apple", "banana", "cherry"]

if "apple” in thislist:
print{“"Yes, 'apple’' is in the fruits list")

OUtpllt Yes, 'apple’ is in the fruits list

Python Lists 2 semester Lecture 1

Insert ltems

To insert a new list item, without replacing any of the existing values, we can
use the insert() method.

The insert() method inserts an item at the specified index;

Example

Insert "watermelon” as the third item:

thislist = ["apple", "banana", "cherry"]
thislist.insert(2, "watermelon™)
print({thislist)

Output

['apple’, 'banana’, 'watermelon’, 'cherry']

Python - Change List Items

Change Item Value

To change the value of a specific item, refer to the index number:

Example

Change the second item:

thislist = ["apple"”, "banana", "cherry"]
thislist[1l] = "blackcurrant”
print(thislist)

Output

'apple’, 'blackcurrant’, 'cherry’]

Python Lists 2 semester Lecture 1
Change a Range of Item Values

To change the value of items within a specific range, define a list with the new
values, and refer to the range of index numbers where you want to insert the
new values:

Example

Change the values "banana” and "cherry” with the values "blackcurrant” and
"watermelon”:

thislist = ["apple”, "banana"”, “"cherry"”, "orange", "kiwi", "mango"]
thislist[1:3] = ["blackcurrant™, "watermelon™]

print(thislist)

Output

['apple’, 'blackeurrant’, 'watermelon’, 'orange’, 'kiwi', 'mango’]

If you insert more items than you replace, the new items will be inserted
where you specified, and the remaining items will move accordingly:

Example

Change the second value by replacing it with fwo new values:

thislist = ["apple", "banana", "cherry"]
thislist[1:2] = ["blackcurrant”, "watermelon"]
print(thislist)

Output

['apple’, 'blackcurrant’, "'watermelon’, "'cherry’]

Note: The length of the list will change when the number of items inserted
does not match the number of items replaced.

If you insert /ess items than you replace, the new items will be inserted where
you specified, and the remaining items will move accordingly:

Example

Change the second and third value by replacing it with ore value:
thislist = ["apple”, "banana"”, "“cherry"]

thislist[1:3] = ["watermelon"]
print{thislist)

ﬂl.ltpl..lt ['apple’, "watermelon’]

Python Lists 2 semester Lecture 1

Python - Add List Items
Append ltems

To add an item to the end of the list, use the append() method:

Example

Using the append() method to append an item:

thislist = ["apple", "banana", “cherry"]
thislist.append{"orange")
print(thislist)

Output

['apple’, 'banana’, 'cherry’, 'orange’]

Extend List

To append elements from another list to the current list, use
the extend() method.

Example

Add the elements of tropical to thislist:

thislist = ["apple", "banana", "cherry"]

tropical = ["mango", "pineapple", "papaya"]
thislist.extend{tropical)

print(thislist)

Output

['apple’, 'banana’, 'cherry', 'mango’, 'pineapple’, 'papaya’]

Python Lists 2 semester Lecture 1

Python - Remove List [tems

Remove Specified Item

The remove() method removes the specified item.

Example

Remove "banana";

thislist = [Yapple", "banana", "cherry"]
thislist.remove(“banana")
print(thislist)

Output

['apple’, 'cherry']

Remove Specified Index

The pop() method removes the specified index.

Example

Remove the second item:
thislist = ["apple”, "banana", "cherry"]

thislist.pop(1l)
print(thislist)

Output

['apple’, 'cherry']

If you do not specify the index, the pop() method removes the last item.

Example

Remove the last item:

thislist = ["apple”, "banana", "cherry"]
thislist.pop()
print{thislist)

Olltpllt ['apple’, 'banana']

b= o .‘9
roo i_:_:'_

Python Lists 2 semester Lecture 1

The del keyword also removes the specified index:

Example

Remove the first item:

thislist = ["apple"”, "banana", “cherry"]
del thislist[®]
print(thislist)

Output

['bBanana’, 'cherry’]

The del keyword can also delete the list completely.

Example

Delete the entire list:

thislist = ["apple"”, "banana", “cherry"]
del thislist

Clear the List

The clear() method empties the list.

The list still remains, but it has no content.

Example

Clear the list content:

thislist = [“"apple", "banana", "cherry"]
thislist.clear()
print{thislist)

Output
[

Pagel0

Python Lists 2 semester Lecture 1

Python - Sort Lists
Sort List Alphanumerically

List objects have a sort() method that will sort the list alphanumerically,
ascending, by default:

Example

Sort the list alphabetically:

thislist = ["orange"”, "mango", "kiwi", "pineapple”, "banana"]
thislist.sort()
print(thislist)

Output

['Banana’, 'kiwi', 'mango’, 'orange’, 'pineapple’]

Example

Sort the list numerically:

thislist = [18@, 58, 65, 82, 23]
thislist.sort()
print{thislist)

Output

[23, 50, 65, 82, 100]

Sort Descending

To sort descending, use the keyword argument reverse = True:

Example

Sort the list descending:

thislist = ["orange", "mango", "kiwi", "pineapple”, "banana"]
thislist.sort{reverse = True)
print{thislist)

OUtEUt ['pineapple’, 'orange’, 'mange’, 'kiwi', 'banana']

|Papgell

Python Lists 2 semester Lecture 1

Example

Sort the list descending:

thislist = [10@, 58, 65, 82, 23]
thislist.sort{reverse = True)
print{thislist)

Output

[100, 82, 65, 50, 23]

Case Insensitive Sort

By default the sort() method is case sensitive, resulting in all capital letters
being sorted before lower case letters:

Example

Case sensitive sorting can give an unexpected result:
thislist = ["banana”, "Orange", "Kiwi", "cherry"]

thislist.sort()
print{thislist)

Output

['Kiwi', 'Orange’, 'banana’, 'cherry’]

Reverse Order

What if you want to reverse the order of a list, regardless of the alphabet?

The reverse() method reverses the current sorting order of the elements.

Example

Reverse the order of the list items:
thislist = ["banana”, "Orange", "Kiwi", "cherry"]

thislist.reverse()
print(thislist)

OI.Itpl.lt ['cherry’, 'Kiwi', 'Orange’, 'banana’]

|Papel2

Python Lists 2 semester Lecture 1
Python - Join Lists
Join Two Lists

There are several ways to join, or concatenate, two or more lists in Python.

One of the easiest ways are by using the + operator.

Example

Join two list:

1ist1 = ["a"J IIhIlJ Il{:ll]
listz = [1, 2, 3]

1list3 = listl + 1ist2
print{list3)

Output

[Iall Ihll Icll 1.' 2! 3]

Another way to join two lists is by appending all the items from list2 into listl,
one by one:

Example

Append list2 into listl.

listl
list2

m
—i
G
[
=3
-
™
el

for x in list2:
listl.append(x)

print{listl)

Output
[a", By "8 1 25 3]

| g

Python Lists 2 semester Lecture 1

Or you can use the extend() method, which purpose is to add elements from
one list to another list:

Example

Use the extend() method to add list2 at the end of listl:

1ist1
1ist2

|8ty TRt 5 Y]
[1, 2, 3]

listl.extend{1list2)
print{listl)

Output

[o Y Y 3 B
Python - Copy Lists
Copy a List

You cannot copy a list simply by typing 1ist2 = 1ist1, because: 1ist2 will only
be a reference to 1list1, and changes made in 1ist1 will automatically also be
made in 1list2.

There are ways to make a copy, one way Is to use the built-in List
method copy ().

Example

Make a copy of a list with the copy() method:
thislist = ["apple", "banana", "cherry"]

mylist = thislist.copy()
print{mylist)

Output

['apple’, 'banana’, 'cherry')]

(]

Fafge 14

Python Lists 2 semester Lecture 1

Another way to make a copy is to use the built-in method 1ist().

Example

Make a copy of a list with the 1ist() method:
thislist = ["apple"”, "banana"“, "cherry"]

mylist = list{thislist)
print(mylist)

Output

['apple’, 'banana’, ‘cherry’]

B
o

=
L

Python LGOP LiSt 2 semester LOCLUre 2

Python - Loop Lists

Example

Print all items in the list, one by one:

thislist = ["apple"”, "banana", "cherry"]
for x in thislist:
print(x)

Output
apple
banana

cherry

Loop Through the Index Numbers

You can also loop through the list items by referring to their index number.

Use the range() and len() functions to create a suitable iterable.

Example

Print all items by referring to their index number:

thislist = ["apple", "banana", "cherry"]
for i in range{len(thislist)):
print{thislist[i])

Qutput

apple

banana

cherry

Pagel

Python LGOP LiSt 2 semester LOCLUre 2

Using a While Loop

You can loop through the list items by using a while loop.

Use the 1en() function to determine the length of the list, then start at 0 and loop
your way through the list items by referring to their indexes.

Remember to increase the index by 1 after each iteration.

Example

Print all items, using a while loop to go through all the index numbers

thislist = ["apple", "banana", "cherry"]
i=20
while i < len{thislist):
print(thislist[i])
i=14+1
Qutput
apple

hanana

cherry

Page?2

Python Tuples e Lecture 3

mytuple = ("apple™, "banana®, "cherry")

Tuple
Tuples are used to store multiple items in a single variable.

Tuple is ocne of 4 built-in data types in Python used to store collections of data, the
other 3 are List, Set, and Dictionary, all with different qualities and usage.

A tuple is a collection which is ordered and unchangeable.

Tuples are written with round brackets.

Example

Create a Tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple)
Output
("apple', 'banana’', 'cherry')

Tuple Items

Tuple items are ordered, unchangeable, and allow duplicate values.

Tuple items are indexed, the first item has index [8], the second item has
index [1] etc.

Ordered

When we say that tuples are ordered, it means that the items have a defined order,
and that order will not change.

Unchangeable

Tuples are unchangeable, meaning that we cannot change, add or remove items
after the tuple has been created.

Allow Duplicates

Since tuples are indexed, they can have items with the same value:

Python Tuples e Lecture 3

Example

Tuples allow duplicate values:
thistuple = ("apple", "banana”, "cherry", "apple", "cherry")

print{thistuple)

Output
('apple’, 'banana’, 'cherry', 'apple’, 'cherry’)

Tuple Length

To determine how many items a tuple has, use the len() function:

Example

Print the number of items in the tuple:

thistuple = ("apple", "banana”™, "cherry")
print{len{thistuple))

Output
2

Create Tuple With One Item

To create a tuple with only one item, you have to add a comma after the item,
otherwise Python will not recognize it as a tuple.

Example

One item tuple, remember the comma:

thistuple = ("apple",)
print(type(thistuple))

HNOT a tuple
thistuple = ("apple")
print(type(thistuple)}

Output
<class "tuple’:

¢class sftp >

Python Tuples e Lecture 3

Tuple Items - Data Types

Tuple items can be of any data type:

Example

String, int and boolean data types:

tuplel = {("apple", "banana", "cherry")
tuple2 = (1, 5, 7, 9, 3)
tuple3 = (True, False, False)

A tuple can contain different data types:

type()

From Python's perspective, tuples are defined as objects with the data type 'tuple':

<class 'tuple’'>

Example

What is the data type of a tuple?

mytuple = ("apple", "banana", "“cherry")
print(type(mytuple)})

Output
<¢lass "tuple’:

Python - Access Tuple ltems

Access Tuple Items

You can access tuple items by referring to the index number, inside square brackets:

Example

Print the second item in the tuple:

thistuple = ("apple", "banana", "cherry")
print(thistuple[1])

Python Tuples e Lecture 3

Output
Banana

MNote: The first item has index 0.

Negative Indexing

Negative indexing means start from the end.

-1 refers to the last item, -2 refers to the second last item etc.

Example

Print the last item of the tuple:

thistuple = ("apple", "banana", "cherry")
print(thistuple[-1])

OQutput
Cherry

Range of Indexes

You can specify a range of indexes by specifying where to start and where to end the
range.

When specifying a range, the return value will be a new tuple with the specified
items.

Example

Return the third, fourth, and fifth item:

thistuple =("apple", "banana", "cherry", "orange", "kiwi", "melon”, "mango")
print(thistuple[2:5])

Output
("cherry', 'orange’, "kiwi')

Python Tuples e Lecture 3

By leaving out the start value, the range will start at the first item:

Example

This example returns the items from the beginning to, but NOT included, "kiwi":

thistuple = ("apple", "banana”, "cherry", "orange”, "kiwi", "melon", "mango")
print(thistuple[:4])

Output

("apple', 'banana', 'cherry', 'orange')

By leaving out the end value, the range will go on to the end of the list:

Example

This example returns the items from "cherry" and to the end:

thistuple = ("apple", "banana", “cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[2:])

Output

("cherry', "orange’, 'kiwi', 'melon’', 'mango’)

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the tuple:

Example

This example returns the items from index -4 {included) to index -1 (excluded)

thistuple = ("apple", "banana", "cherry", "orange", "kiwi", "melon", "mango")
print(thistuple[-4:-1])

Output

("orange', 'kiwi', 'melon')

Python Tuples e Lecture 3

Check if Item Exists

To determine if a specified item is present in a tuple use the in keyword:

Example

Check if "apple" is present in the tuple:

thistuple = ("apple", "banana®™, "cherry")
if "apple” in thistuple:
print{"Yes, 'apple’' is in the fruits tuple")

Output
Yes, 'apple’ is in the fruits tuple

Python - Update Tuples

Tuples are unchangeable, meaning that you cannot change, add, or remove items
once the tuple is created.

But there are some workarounds.

Change Tuple Values

Once a tuple is created, vou cannot change its values. Tuples are unchangeable,
or immutable as it also is called.

But there is a workaround. You can convert the tuple into a list, change the list, and
convert the list back into a tuple.

Python Tuples e Lecture 3

Example

Convert the tuple into a list to be able to change it:

x = ("apple", "banana", "cherry"™)
¥ = 135t}

yil] = “leiwl”

¥ = tuple(y)

print(x)

Output
("apple’, 'kiwi', "cherry’)

Add Items

Since tuples are immutable, they do not have a build-in append() method, but there
are other ways to add items to a tuple.

1. Convert into a list: Just like the workaround for changing a tuple, you can
convert it into a list, add your item(s), and convert it back inte a tuple.

Example

Convert the tuple into a list, add "orange"”, and convert it back into a tuple:

thistuple = ("apple”, "banana", "cherry")
y = list(thistuple)

y.append{"orange")

thistuple = tuple{y)

2. Add tuple to a tuple. You are allowed to add tuples to tuples, so if you want to
add one item, (or many), create a new tuple with the item(s), and add it to the
existing tuple:

Python Tuples e Lecture 3

Example

Create a new tuple with the value "orange”, and add that tuple:

thistuple = ("apple"”, "banana", "cherry")
y = ("orange",)
thistuple += ¥y

print(thistuple)
Output

('apple', 'banana', 'cherry', 'orange')

Remove Items

Note: You cannot remove items in a tuple.

Tuples are unchangeable, so you cannot remove items from it, but you can use the
same workaround as we used for changing and adding tuple items:

Example

Convert the tuple into a list, remove "apple", and convert it back into a tuple:

thistuple = ("apple", "banana”, "cherry")
y = list{thistuple)

y.remove("apple”}

thistuple = tuple{y)

print{thistuple)

Output
(‘banana’, 'cherry')

Qr you can delete the tuple completely:

Example

The del keyword can delete the tuple completely:

thistuple = ("apple”, "banana", "cherry")
del thistuple
print{thistuple) #this will raise an error because the tuple no longer exists

Qutput

Python Tuples e Lecture 3

Python - Join Tuples

Join Two Tuples

To join two or more tuples you can use the + operator:

Example

Join two tuples:

tUp]_E]_ == {I-I'alr, Ilbll : Ilcll}
tuple2 = (1, 2, 3)

tuple3 = tuplel + tuple2
print(tuple3)

Qutput

E'ar, rt‘:'I.'l IC'I.'F 1.'! l2.1 3)

Multiply Tuples

If you want to multiply the content of a tuple a given number of times, you can use
the * operator:

Example

Multiply the fruits tuple by 2:

fruits = ("apple”, "banana”, "cherry")
mytuple = fruits * 2

print(mytuple)
Output

("apple', 'banana’, 'cherry', 'apple’', "banana’, 'cherry')

Python Loop(Tuple) 2semester Lecture 4

Loop through a Tuple

You can loop through the tuple items by using a for loop.

Example

[terate through the items and print the values:

thistuple = ("apple", "banana", "cherry")
for x in thistuple:
print(x)

Output
apple
banana

cherry

Loop Through the Index Numbers

You can also loop through the tuple items by referring to their index number.

Use the range() and len() functions to create a suitable iterable.

Example

Print all items by referring to their index number:

thistuple = ("apple", "banana", "cherry")
for 1 in range{len{thistuple)):
print(thistuple[i])

Qutput
apple
banana

cherry

Python Loop(Tuple) 2semester Lecture 4

Using a While Loop

You can loop through the tuple items by using a while loop.

Use the 1len() function to determine the length of the tuple, then start at 0 and loop
your way through the tuple items by referring to their indexes.

Remember to increase the index by 1 after each iteration.

Example

Print all items, using a while loop to go through all the index numbers:

thistuple = ("apple", "banana”™, "cherry")
i=0
while i < len{thistuple):
print(thistuple[i])
1 =4 4 1

Qutput
apple
banana

cherry

Python Sets 2 semester Lecture 5 & 6

myEEt — {"appleuj ubananauj "ChEFFy"}

Set

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the
other 3 are List, Tuple, and Dictionary, all with different qualities and usage.

A set is a collection which is unordered, unchangeable*®, and unindexed.

* Note: Set /femms are unchangeable, but you can remove items and add new items.

Sets are written with curly brackets.

Example

Create a Set:

thisset = {"apple”, "banana"”, “cherry"}
print(thisset)

Note: Sets are unordered, so you cannot be sure in which order the items will
appear.

Set [tems

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order,

Set items can appear in a different order every time you use them, and cannot be
referred to by index or key,

Unchangeable

Set items are unchangeable, meaning that we cannot change the items after the set
has been created.

Python Sets 2 semester Lecture 5 & 6

Once a set is created, you cannot change its items, but you can remove items and
add new items.

Duplicates Not Allowed

Sets cannot have two items with the same value.

Example

Duplicate values will be ignored;:

thisset = {"apple"”, "banana", "cherry", "apple"}

print(thisset)
Output
{'apple’, "banana', 'cherry'}

Note: The values True and 1 are considered the same value in sets, and are treated
as duplicates:

Example

True and 1 is considered the same value:
thisset = {"apple", "banana", "cherry", True, 1, 2}

print{thisset)

Get the Length of a Set

To determine how many items a set has, use the len() function.

Example

Get the number of items in a set:

thisset = {"apple"”, "banana”, "cherry"}

print(len{thisset))

Qutput
3

Python Sets 2 semester Lecture 5 & 6

Set Items - Data Types

Set items can be of any data type:

Example

String, int and boolean data types:

setl = {"apple"”, "banana”, "cherry"}
saty = £ 5By B §)
set3 = {True, False, False}

A set can contain different data types:

Example

A set with strings, integers and boolean values:

setl = {"abc", 34, True, 48, "male"}

type()

From Python's perspective, sets are defined as objects with the data type 'set':

<class 'set’'>

Example

What is the data type of a set?

myset = {"apple", "banana", "cherry"}
print(type{myset))

Qutput

<'class 'set>

Python Sets 2 semester Lecture 5 & 6

Python - Access Set [tems

Access ltems

You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a specified value is
present in a set, by using the in keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana”, "cherry"}

for x in thisset:
print{x)

Qutput

apple
cherry
banana

Example

Check if "banana" is present in the set;:

thisset = {"apple", "banana", "cherry"}

print(“banana” in thisset)
Qutput

True

Change ltems

Once a set is created, you cannot change its items, but you can add new items.

Python Sets 2 semester Lecture 5 & 6

Python - Add Set Items
Add Items

Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

Example

Add an item to a set, using the add() method:

thisset = {"apple", "banana", "“cherry"}
thisset.add{"orange")

print(thisset)

Qutput

apple', 'cherry’, 'hanana’, 'orange'}

Add Sets

To add items from another set into the current set, use the update() method.

Example

Add elements from tropical into thisset:

thisset = {"apple", "banana", "cherry"}
tropical = {"pineapple", "mango", "papaya"}

thisset.update{tropical)

print{thisset)

Output

{banana’, 'cherry', 'papaya’, 'mango’, 'pineapple’, 'apple’}

Python Sets 2 semester Lecture 5 & 6

Add Any Iterable

The cbject in the update() method does not have to be a set, it can be any iterable
object (tuples, lists, dictionaries etc.).

Example

Add elements of a list to at set:

thisset = {"apple"”, "banana“, “cherry"}
mylist = ["kiwi", "orange"]

thisset.update{mylist)

print(thisset)

Python Sets 2 semester Lecture 5 & 6

Python - Remove Set Items

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

Example

Remove "banana” by using the remove() method:
thisset = {"apple”, "banana", "cherry"}
thisset.remove{"banana")

print(thisset)

Qutput
{"apple', "cherry'}

Note: If the item to remove does not exist, remove() will raise an error.

Example

Remove "banana” by using the discard() method:
thisset = {"apple", "banana", "cherry"}
thisset.discard("banana")

print(thisset)

Dutput
{'apple', 'cherry'}

Note: If the item to remove does not exist, discard() will NOT raise an error.

You can also use the pop() method to remove an item, but this method will remove
a random item, so you cannot be sure what item that gets removed.

The return value of the pop() method is the removed item.

Python Sets 2 semester Lecture 5 & 6

Example

Remove a random item by using the pop() method:

thisset = {"apple", "banana", "cherry"}
¥ = thisset.pop()

print(x)

print(thisset)

Note: Sets are unordered, so when using the pop() method, you do not know which
item that gets removed.

Example

The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}
thisset.clear()

print(thisset)

Qutput
set()

Example

The del keyword will delete the set completely:
thisset = {"apple”, "banana”, "cherry"}
del thisset

print(thisset)
Qut put
“Traceback [maost recent call last)

<File "D:\Pathon Programs\first semster programiwhile.py"”, line 5, in <maodule

print{thisset)

Mt AR AR

MameError: name 'thisset’ is not defined

Python Sets 2 semester Lecture 5 & 6

Python - Join Sets

Join Two Sets

There are several ways to join two or more sets in Python.

You can use the union() method that returns a new set containing all items from both
sets, or the update() method that inserts all the items from one set into another:

Example

The unien() method returns a new set with all items from both sets:

setl
setZ

set3 = setl.union(set2)
print(set3)

Example

The update() method inserts the items in set2 into setl:

SE'-tl = {Ilall:l Ilhll , Ilcll}
set2 = {1, 2, 3}

setl.update{set2)

print(setl)
Note: Both union() and update() will exclude any duplicate items.

Keep ONLY the Duplicates

The intersection update() method will keep only the items that are present in both
sets.

Example

Keep the items that exist in both set x, and set y:

¥ = {"apple"”, "banana®, "cherry"}
y = {"google"”, "microsoft", "apple"}

x.intersection update(y)

print(x)

Python Sets 2 semester Lecture 5 & 6

The intersection() method will return a new set, that only contains the items that are
present in both sets.

Example

Return a set that contains the items that exist in both set x, and set y:

o {Ilapplell-’ "bEIﬂEIFIEI"_, "ChEF‘I"}I’"}
y = {"google”, "microsoft", "apple"}

z = X.intersection(y)

print{z)

Keep All, But NOT the Duplicates

The symmetric_difference update() method will keep only the elements that are NOT
present in both sets.

Example

Keep the items that are not present in both sets:

¥ = {"apple"”, "banana", "cherry"}
vy = {"google"”, "microsoft®, "apple"}

x.symmetric_difference update(y)
print(x)

The symmetric_difference() method will return a new set, that contains only the
elements that are NOT present in both sets.

Example

Return a set that contains all items from both sets, except items that are present in
both:

v = {llapplell-’ "ba"anauj "ChEFl‘}F"}
y = {"google", "microsoft", "apple"}

z = Xx.symmetric differencely)
print(z)

10

Python Sets 2 semester Lecture 5 & 6

Note: The values True and 1 are considered the same value in sets, and are treated
as duplicates:

Example

True and 1 is considered the same value:

¥ = {"apple"”, "banana", "cherry", Truej}
y = {"google", 1, "apple", 2}

z = x.symmetric_difference(y)

print(z)

Output

{2, 'cherry', 'google', 'banana'}

Loop Items

You can loop through the set items by using a for loop:

Example

Loop through the set, and print the values:

thisset = {"apple”, "banana”, “"cherry"}

for ¥ in thisset:
print(x)

11

First Exam Onsite assignment 1

Numbers = [5, 10, 15, 20, 25]

ol L e i

Print First number

Print Second number

Madifying 3" elements in the list by (30)
Adding elements to the list by (35)
Remove the fourth element {20}
Iterating through the list
print{"Numbers:"}

#(Creating a list of numbers
numbers[25 20 ¢15 +10 5] =

#Accessing elements in the list
print{"First number:", numbers[0]) # Output: 5
print{"Second number:", numbers[1]) # Output: 10

#Modifying elements in the list
numbers[2] = 30
print{" Modified list:", numbers) # Qutput[25 <20 <30 «10 5] :

#Adding elements to the list
numbers.append(35)
print{"After appending:", numbers) # Output[35 25 <20 <30 «10 5] :

#Removing elements from the list
removed number = numbers.pop(3] # Remove the fourth element (20) and return it
print(”Removed number:"”, removed_number) # Output: 20

print("After popping:”, numbers) # Output[35 <25 30 ¢10 5] :

#lterating through the list

print("Numbers:")

for number in numbers;
print(number)

Python Dictionaries 2semester Lecture 7

Python Dictionaries

thisdict = {
"brand”: "Ford",
“model”: "Mustang"”,
"year": 1964

}

Dictionary

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered®*, changeable and do not allow
duplicates.

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,
dictionaries are unordered.

Dictionaries are written with curly brackets, and have keys and values:

Example

Create and print a dictionary:

thisdict = {

"brand”: "Ford",
"model”: "Mustang”,
"year": 1964

1

print{thisdict)

Qutput

{'brand’': "Ford', 'model': 'Mustang', ‘year': 1964}
Dictionary Items

Dictionary items are ordered, changeable, and does not allow duplicates.

Dictionary items are presented in key:value pairs, and can be referred to by using
the key name.

Python Dictionaries 2semester Lecture 7
Example

Print the "brand" value of the dictionary:

thisdict = {

"brand": "Fard",
"model”: "Mustang”,
"year”: 1964
}
print(thisdict["brand"])
Qutput
Ford

Ordered or Unordered?

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,
dictionaries are unordered.

When we say that dictionaries are ordered, it means that the items have a defined
order, and that order will not change.

Unordered means that the items does not have a defined order, you cannot refer to
an item by using an index.

Changeable

Dictionaries are changeable, meaning that we can change, add or remove items after
the dictionary has been created.

Duplicates Not Allowed
Dictionaries cannot have two items with the same key:
Example

Duplicate values will overwrite existing values:

thisdict = |
'I'I'J::_r - “J."'l" e L1 P'-' -]

'J LS - L] - — r
"hrand®: "Hisan®,
"model"s "Fashang™;
"wearT: 1964,
ooz 2020

printithisdlict)
Output

{'brand’': "Nisan', 'model': 'Mustang’, ‘year': 2020}

Python Dictionaries 2semester Lecture 7
Dictionary Length

To determine how many items a dictionary has, use the len() function:

Example

Print the number of items in the dictionary:
print(len({thisdict))

Dictionary Items - Data Types

The values in dictionary items can be of any data type:

Example

String, int, boolean, and list data types:

thisdict = {
"brand”: “"Ford’,
"electric”: False,
"year": 1964,
"colors”: ["red”, "white", "blue"]

}
type()

From Python's perspective, dictionaries are defined as objects with the data type
‘dict':

<class 'dict’':
Example

Print the data type of a dictionary:

thisdict = {

“brand”: "Ford",
"model”: "Mustang",
"year": 1964

}
print(type{thisdict))

Qutput

<class ‘'dict'>

Python Dictionaries 2semeser Lecture 8

Python - Access Dictionary Items

Accessing Items

You can access the items of a dictionary by referring to its key name, inside square
brackets:

Example

Get the value of the "model" key:

thisdict = {
“brand”: “Ford",
“model”: “"Mustang"”,
"year": 1964

iy
x = thisdict["“model"]

print(x)
Output

Mustang

There is also a method called get() that will give you the same result:

Example

Get the value of the "model” key:

%X = thisdict.get("model™)

Get Keys

The keys() method will return a list of all the keys in the dictionary.

Example

Get a list of the keys:

x = thisdict.keys()

The list of the keys is a view of the dictionary, meaning that any changes done to the
dictionary will be reflected in the keys list.

Python Dictionaries 2iemener Lecture 8

Example

Add a new item to the original dictionary, and see that the keys list gets updated as
well:

car = {

"brand”: "Ford",
"model"”: "Mustang",
"year": 1964

}

x = car.keys()

print(x) #before the change
car["color"] = "white"

print(x) #after the change
print(car)

Qutput

dict_keys(['brand’', 'model', 'year'])

dict_keys(['brand’', ‘'model’, ‘'year', ‘'color'])

{'brand’: 'Ford', 'model’: 'Mustang’, ‘'vear': 1964, 'color': ‘'white’}

Get Values
The values() method will return a list of all the values in the dictionary.

Example

Get a list of the values:

x = thisdict.values()

The list of the values is a view of the dictionary, meaning that any changes done to
the dictionary will be reflected in the values list.

Example

Make a change in the original dictionary, and see that the values list gets updated as
well:

car = {

"brand": "Ford",

“model"”: “"Mustang",

"year": 1964

}

X = car.values()

print(x) #before the change
car["year"] = 2020

print(x) #after the change

Python Dictionaries 2semener Lecture 8

Output

dict_values(['Ford', 'Mustang', 1964])
dict_values(['Ford', 'Mustang', 2020])

Example

Add a new item to the original dictionary, and see that the values list gets updated as
well:

car = {

"brand": "Ford",
“model”: “"Mustang",
“year": 1964

}

x = car.values()

print(x) #before the change
car["color"] = “red"
print(x) #after the change

Get Items

The items() method will return each item in a dictionary

Example

Get a list of the key: value pairs

¥ = thisdict.items()

The returned list is a view of the items of the dictionary, meaning that any changes done
to the dictionary will be reflected in the items list.

Example

Make a change in the original dictionary, and see that the items list gets updated as
well:

car = {

“brand": "Ford",
"model"”: "Mustang",
"year": 1964

}

X = car.items()
print(x) #before the change
car["year"] = 2020

print(x) #after the change

Python Dictionaries 2semeser Lecture 8

Output

dict_items([('brand’', ‘Ford'), ('model’', 'Mustang'), ('year', 1964)])
dict_items([('brand’', ‘Ford'), ('model’, ‘Mustang'), ('year‘, 2020)])

Example

Add a new item to the original dictionary, and see that the items list gets updated as
well:

car = {

"brand”: “Ford",
“model": "Mustang"”,
“year": 1964

}

x = car.items()
print(x) #before the change
car[“color"] = “red"

print(x) #after the change

Qutput
dict_items([("brand’, 'Ford'), ('model’, "Mustang’), ('year’, 1964)])

dict_items([('brand', ‘Ford"), ('model’, '"Mustang"), ('year’, 1964), (‘color’, ‘red")])

Check if Key Exists

To determine if a specified key is present in a dictionary use the in keyword:

Example

Check if "model" is present in the dictionary:

thisdict = {

"brand": “Ford",
“model"”: “Mustang",
"year": 1964

}
if "model"” in thisdict:

print(“"Yes, 'model’ is one of the keys in the thisdict dictionary”)

Output
Yes, 'model’ is one of the keys in the thisdict dictionary

4

Python Dictionaries 2sementer Lecture 8

Python - Change Dictionary Items
Change Values

You can change the value of a specific item by referring to its key name:

Example

Change the "year" to 2018:

thisdict = {
“brand": "“Ford",
“"model”: "Mustang",
“year": 1964

}
thisdict["year"] = 2018

print(thisdict)

Output
{'brand’': 'Ford', 'model’: 'Mustang', 'year': 2018}

Update Dictionary

The update() method will update the dictionary with the items from the given argument.

The argument must be a dictionary, or an iterable object with key:value pairs.

Example
Update the "year" of the car by using the update() method:
thisdict = {
"brand": "Ford",
“"model”: "Mustang",
“year": 1964
}
thisdict.update({"year": 2020})
print(thisdict)
Qutput

{'brand': 'Ford', 'model’: ‘'Mustang’', ‘year': 2020}

Python Dictionaries 2semester Lecture 8

Python - Add Dictionary Items
Adding Items

Adding an item to the dictionary is done by using a new index key and assigning a value
to it:

Example

thisdict = {
“brand”: “Ford",
"model”: "Mustang”,
“"year": 1964

}

thisdict["color”] = “red”

print(thisdict)

OQutput

{'brand': 'Ford', 'model’': 'Mustang', 'year': 1964, ‘color': 'red'}

Update Dictionary

The update() method will update the dictionary with the items from a given argument. If
the item does not exist, the item will be added.

The argument must be a dictionary, or an iterable object with key:value pairs.

Example

Add a color item to the dictionary by using the update() method:

thisdict = {
"brand": "Ford",
"model”: "Mustang”,
“year": 1964

}
thisdict.update({"color”: "red"})

Qutput
{'brand': 'Ford', 'model’: 'Mustang', ‘year': 1964, 'color': 'red'}

Python Dictionaries 2semener Lecture 8
Python - Remove Dictionary Items
Removing Items

There are several methods to remove items from a dictionary:

Example

The pop() method removes the item with the specified key name:

thisdict = {
"brand": “Ford",
"model”: "Mustang”,

“year": 1964
}
thisdict.pop(“"model™)
print(thisdict)
Output
{'brand': 'Ford', ‘year': 1964}
Example

The popitem() method removes the last inserted item (in versions before 3.7, a random
item is removed instead):

thisdict = {
"brand": "Ford",
"model": "Mustang",
"year": 1964

}
thisdict.popitem()

print(thisdict)

Output
{'brand’': 'Ford', ‘model’: 'Mustang’}

Example

The del keyword removes the item with the specified key name:

thisdict = {
"brand": "Ford",
“model”: “Mustang",
“year": 1964
}
del thisdict["“model"]
print(thisdict)
Output

{'brand': 'Ford', ‘year': 1964}

Python Dictionaries 2semester Lecture 8

Example

The del keyword can also delete the dictionary completely:

thisdict = {
"brand": "Ford",
"model": "Mustang",
“year": 1964

}
del thisdict
print(thisdict) #this will cause an error because "thisdict" no longer exists.

Output
Traceback (most recent call last):

File "D:\Pathon Programs\first semster program\while.py”, line 7, in <module>
print(thisdict) #this will cause an error because “"thisdict” no longer

exists.
AAAAAAAN

NameError: name 'thisdict’ is not defined

Example

The clear() method empties the dictionary:

thisdict = {
“brand”: "Ford",
"model”: "Mustang”,
"year": 1964

}

thisdict.clear()

print(thisdict)

{}

Python Dictionaries 2semeser Lecture 8

Copy a Dictionary

You cannot copy a dictionary simply by typing dict2 = dict1, because: dict2 will only be
a reference to dict1, and changes made in dict1 will automatically also be made in dicta2.

There are ways to make a copy, one way is to use the built-in Dictionary method copy().

Example

Make a copy of a dictionary with the copy() method:

thisdict = {
"brand": “Ford",
"model”: “"Mustang”,
"year": 1964

s

mydict = thisdict.copy()

print(mydict)

Another way to make a copy is to use the built-in function dict().

Example

Make a copy of a dictionary with the dict() function:

thisdict = {
"brand”: “Ford”,
"model": “"Mustang",
"year": 1964

}

mydict = dict(thisdict)

print(mydict)

Python Dictionaries 2semeer Lecture 8
Python - Nested Dictionaries

Nested Dictionaries

A dictionary can contain dictionaries, this is called nested dictionaries.

Example

Create a dictionary that contain three dictionaries:

myfamily = {
“childi" : { “name" : “Emil", “year" : 2004 },
“child2" : { "name" : “Tobias","year" : 2007},
"child3" : "name" : "Linus“, “year" : 2011 }

}
print(myfamily)

Output
{'child1l': {'name’': 'Emil’, 'year': 2004}, ‘child2’: {'name’: 'Tobias', 'year':
2007}, ‘'child3’: {'name’': 'Linus‘', ‘year’': 2011}}

Or, if you want to add three dictionaries into a new dictionary:

Example

Create three dictionaries, then create one dictionary that will contain the other three
dictionaries:

childl = {"name" : “Emil", “year" : 2004 }
child2 = {“name" : “Tobias","year" : 2007 }
child3 = {“name" : “Linus","year" : 2011 }
myfamily = {

“"childl" : childi,

"child2" : child2,

"child3" : child3

}
print(myfamily)

Output
{'childl': {'name': 'Emil’', 'year': 2004}, 'child2': {'name’': 'Tobias', 'year':
2007}, 'child3’': {'name': 'Linus', ‘'year': 2011}}

10

Python Dictionaries 2semester Leécture 8

Access Items in Nested Dictionaries

To access items from a nested dictionary, you use the name of the dictionaries, starting
with the outer dictionary:

Example

Print the name of child 2:

print(myfamily[“child2"][“name"])

myfamily = {
"childl" : {"name" : "Emil", "year" : 2004 },
“child2" : {"name" : "Ali",“year" : 2007},
“child3" : {“"name" : “Linus"“, “year" : 2011 }
}

print(myfamily["child2"]["name"])

OQutput
Ali

11

Python Dictionaries 2semeser Lecture 8
Python - Loop Dictionaries
Loop Through a Dictionary

You can loop through a dictionary by using a for loop.

When looping through a dictionary, the return value are the keys of the dictionary, but
there are methods to return the values as well.

Example

Print all key names in the dictionary, one by one:

thisdict = {"brand”: "Ford","model”:"Mustang”,"year":1964}

for x in thisdict:
print(x)

Output
brand
model

year
Example

Print all values in the dictionary, one by one:
thisdict = {"brand": "Ford","model”:"Mustang”,"year":1964}

for x in thisdict:
print(thisdict[x])

Output
Ford
Mustang
1964

12

Python Dictionaries 2semener Lecture 8

Example

You can also use the values() method to return values of a dictionary:

thisdict = {"brand": "Ford","model”:"Mustang"”,"year":1964}

for x in thisdict.values():
print(x)

Output

Ford
Mustang
1964

Example

You can use the keys() method to retumn the keys of a dictionary:
thisdict = {"brand": "Ford","model”:"Mustang"”,"year":1964}

for x in thisdict.keys():
print(x)

Output
brand
model

year
Example

Loop through both keys and values, by using the items() method:
thisdict = {"brand": "Ford","model”:"Mustang"”,"year"”:1964}

for x, y in thisdict.items():
print(x, y)

Output
brand Ford

model Mustang
year 1964

13

Python Functions 2 semester Lecture 9

Python Functions

A function is a block of code which only runs when it is called.
You can pass data, known as parameters, into a function.

A function can return data as a result.

Creating a Function

In Python a function is defined using the def keyword:

Example

def my function():
print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my function():
print(“Hello from a function™)

my_function()

OQutput

Hello from a function

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You can
add as many arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the
function is called, we pass along a first name, which is used inside the function to
print the full name:

Python Functions 2 semester Lecture 9
Example

def my_ function(fname}:
print(fname + " Refsnes")

my function{"Emil"}

my_ function("Tobias")

my_function{"Linus")

Qutput

Emil Refsnes
Tobias Refsnes

Linus Refshnes

Parameters or Arguments?

The terms parameter and argument can be used for the same thing: information
that are passed into a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function
definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

By default, a function must be called with the correct number of arguments.
Meaning that if your function expects 2 arguments, you have to call the function

with 2 arguments, not more, and not |less.

Example

This function expects 2 arguments, and gets 2 arguments:

def my function{fname, lname):
print(fname + " " + lname)

my function("Emil"™, "Refsnes”)

Output

Emil Refsnes

If you try to call the function with 1 or 3 arguments, you will get an error:

Python Functions 2 semester Lecture 9
Example

This function expects 2 arguments, but gets only 1:

det my function(fname, lname):
print(fname + " " + lname)

my function{"Emil")

Arbitrary Arguments, *args

If you do not know how many arguments that will be passed into your function,
add a * before the parameter name in the function definition.

This way the function will receive a tuple of arguments, and can access the items
accordingly:

Example

If the number of arguments is unknown, add a * before the parameter name:

def my function(*kids):
print("The youngest child is " + kids[2])

my function{"Emil", "Teobias"”, "Linus"™)

output
The youngest child is Linus

Example

def my function(*kids):
for 1 in kids:
print(i)
my function{“"Emil", "Tobias", "Linus")

OQutput

Ermnil
Tobias

Linus

Arbitrary Arguments are often shortened to *args in Python documentations.

Python Functions 2 semester Lecture 9

Keyword Arguments

You can also send arguments with the key = value syntax.

This way the order of the arguments does not matter.

Example

def my function(child3, child2, childl):
print("“The youngest child is " + child3)

my function{childl = "Emil", child2 = "Tabias", child3 = "Linus")

Qutput

The youngest child is Linus

The phrase Keyword Arguments are often shortened to kwargs in Python
documentations.

Arbitrary Keyword Arguments, **kwargs

If you do not know how many keyword arguments that will be passed into your
function, add two asterisk: ** before the parameter name in the function
definition.

This way the function will receive a dictionary of arguments, and can access the
items accordingly:

Example

If the number of keyword arguments is unknown, add a double *+ before the
parameter name:

det my_function(**kid}):
print("His last name is " + kid["1lname"])

my_function{fname = "Tobias", lname = "Refsnes")

Qutput

His last name is Refsnes

Example

def my Lunsbiren(**lkad] :
eyl YHis Least frane 23T 4+ kig [lonas]]
print{kid)

mwy function{fname = "Tablias™, lname = "Refisnes")

Output

{'fname’: "Tobias', 'Iname": 'Refsnes'}

Python Functions 2 semester Lecture 9

Arbitrary Kword Arguments are often shortened to **kwargs in Python
documentations.

Default Parameter Value

The following example shows how to use a default parameter value.

If we call the function without argument, it uses the default value:

Example

def my_ function(country = "Norway"):
print{"I am from " + country)

my_function("Sweden")

my function{“"India")

my function()
my_function{"Brazil")

Qutput

I am from Sweden
I am from India
I am from Norway

I am from Brazil

Passing a List as an Argument

You can send any data types of argument to a function (string, number, list,
dictionary etc.), and it will be treated as the same data type inside the function.

E.g. if you send a List as an argument, it will still be a List when it reaches the
function:
Example

def my function{food):
for x in food:
print(x)

fruits = ["apple”, "banana", "cherry"]

my function{fruits)
Qutput

apple

banana

Python Functions 2 semester Lecture 9

cherry

Return Values
To let a function return a value, use the return statement:

Example
det my function(x):

return 5 * x

print(my_function(3))
print{my_ function{5))
print{my function(9))

Output
15
25

45

The pass Statement

function definitions cannot be empty, but if you for some reason have
a function definition with no content, put in the pass statement to avoid getting an
error.

Example

def myfunction{):
pass

Output

Python Lambda 2 semester Lecture 10

In Python, a lambda function is a small anonymous function defined using the lambda keyword.
Lambda functions can take any number of arguments but can only have one expression.

They are often used when you need a simple function for a short time.

The main purpose of using lambda functions in Python is to create small, anonymous functions
quickly and conveniently. They are particularly useful in situations where you need a simple function
for a short duration or where you need to pass a function as an argument to another function.

Syntax

lambda agrguments : expression

The expression is executed and the result is returned:

Example

Add 10 to argument a, and return the result:

x = lambda a : a + 18
print{x(5})

Qutput
15

Lambda functions can take any number of arguments:

Example

Multiply argument a with argument b and return the result;

X = lambda a, b : a * b
print{x(5, 6)})

Output
E1%)

Example

Summarize argument a, b, and ¢ and return the result:

¥ = lambda a, b, ¢ : a+ b + ¢
print(x(5, 6, 2))

Output
13

Why Use Lambda Functions?

The power of lambda is better shown when you use them as an anonymous

function inside another function.

Say you have a function definition that takes one argument, and that argument

will be multiplied with an unknown number:

Python Lambda 2 semester Lecture 10
def myfuncin):
return lambda a : a * n

Use that function definition to make a function that always doubles the number
you send in:

Example

def myfuncin):
return lambda a : a # n

Create a new function mydoubler that multiplies its argument by 2 (lambda a:a*2)

mydoubler = myfunc(2)
Output: 22 (11 * 2)
print{mydoubler({11})
Output

22

Or, use the same function definition to make a function that always tripfes the
number you send in:

Example

def myfuncin):
return lambda a : a * n

mytripler = myfunc{(3) # lambda a:a*3

print(mytripler{1l))

Output
33

Or, use the same function definition to make both functions, in the same
program:

def myIuncinl)s;

return lamk:da a : a8 * n
myclcukbler = myfunc(2) # lambda ara*z
mybripler = myfunc(3) # lambda aA:a*3
n=irt {irput (Yentre any nunber™))
print {mydoubler ()]
printimytripler(n))
Output
22

32

Pyt h on Arrays 2 semester LeCture 11

Note: Python does not have built-in support for Arrays, but Python Lists can be
used instead.

Arrays

how to use LISTS as ARRAYS, however, to work with arrays in Python you will
have to import a library, like the NumPy library.

Arrays are used to store multiple values in one single variable:

Example

Create an array containing car names.

cars = ["Ford", "Volvo", “BMW"]

What is an Array?

An array is a special variable, which can hold more than one value at a time.

If you have a list of items (a list of car names, for example), storing the cars in
single variables could lock like this:

carl = "Ford"
car2 = "Volvo"
cars = "BMW"

However, what if you want to loop through the cars and find a specific one? And
what if you had not 3 cars, but 3007

The solution is an array!

An array can hold many values under a single name, and you can access the
values by referring to an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number.

Example

Get the value of the first array item:

X = cars[@]

Pyt h on A rrayS 2 semester LeCture 11

Example

Modify the value of the first array item:

cars[®] = "Toyota"

The Length of an Array

Use the len() method to return the length of an array (the number of elements
in an array).

Example

Return the number of elements in the cars array:

cars = ["Ford", "Volvo", "BMW"]

x = len(cars)
print(x)

Note: The length of an array is always one more than the highest array index.

Looping Array Elements

You can use the for in loop to loop through all the elements of an array.

Example

Print each item in the cars array:

cars = ["Ford", "Volvo", "BMW"]

for ¥ in cars:
print(x)

Adding Array Elements

You can use the append() method to add an element to an array.

Add one more element to the cars array:

cars.append{“Honda")

Pyt h on Arrays 2 semester LeCture 11

Example

“Ford™ . "Valsrg™, TBMET
print {cars)
cars.appenc ("onda™)

print fears)

i [

Removing Array Elements

You can use the pop() method to remove an element from the array.

Delete the second element of the cars array:

cars.pop{l)

Example

cars = ["Ford", "Volvo", "BMW"]

You can also use the remove() method to remove an element from the array.

Delete the element that has the value "Volvo":

cars.remove{ "Volvo")

Example

gRrE =~ [MECEdF, WWolvolly TEINT]
print{cars)
Tr

o R, R [P L
cars,. remaovae ("o lv o™

print{cars)

Note: The list's remove() method only removes the first occurrence of the
specified value.

Pyt h on A rrayS 2 semester LeCture 11
NumPy

NumPy is a Python library.
NumPy is used for working with arrays.

NumPy is short for "Numerical Python".

Import NumPy

Once NumPy is installed, import it in your applications by adding
the import keyword:

import numpy

Now NumPy is imported and ready to use.

Example

import numpy
arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

Qutput
[12345]

NumPy as np

NumPy is usually imported under the np alias.
alias: In Python alias are an alternate name for referring to the same thing.
Create an alias with the as keyword while importing:

import numpy as np

Now the NumPy package can be referred to as np instead of numpy.

Example

import numpy as np

Pyt h on A rrayS 2 semester LeCture 11
0-D Arrays

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a
0-D array.

Example

Create a 0-D array with the value 42

import numpy as np
arr = np.array(42)

print{arr)

Qutput
42

1-D Arrays

An array that has 0-D arrays as its elements is called uni-dimensional or 1-D
array.

These are the most common and basic arrays.

Example

Create a 1-D array containing the values 1,2,3,4,5:

import numpy as np
arr = np.array({[1, 2, 3, 4, 5])

print{arr)

Output
[12345]

2-D Arrays

An array that has 1-D arrays as its elements is called a 2-D array.
These are often used to represent matrix or 2nd order tensors.

NumPy has a whole sub module dedicated towards matrix operations
called numpy.mat

Pyt h on A rrayS 2 semester LeCture 11

Example

Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

QOutput
[[12 3]

[4 5 6]]

3-D arrays

An array that has 2-D arrays (matrices) as its elements is called 3-D array.

These are often used to represent a 3rd order tensor.

Example

Create a 3-D array with two 2-D arrays, both containing two arrays with the
values 1,2,3 and 4,5,6:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]1])

print(arr)
Output
[[12 3]
[45 6]

[789]]

Check Number of Dimensions?

NumPy Arrays provides the ndim attribute that returns an integer that tells us how
many dimensions the array have.

Pyt h on A rrayS 2 semester LeCture 11

Example

Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

QOutput
[[12 3]

[4 5 6]]

3-D arrays

An array that has 2-D arrays (matrices) as its elements is called 3-D array.

These are often used to represent a 3rd order tensor.

Example

Create a 3-D array with two 2-D arrays, both containing two arrays with the
values 1,2,3 and 4,5,6:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]1])

print(arr)
Output
[[12 3]
[45 6]

[789]]

Check Number of Dimensions?

NumPy Arrays provides the ndim attribute that returns an integer that tells us how
many dimensions the array have.

Pyt h on A rrayS 2 semester LeCture 11

Example

Check how many dimensions the arrays have:

import numpy as np

a = np.array(42)

b = np.array([1, 2, 3, 4, 5])

C = np.ar*r*a},.r{[[l, 2, 3].1 [4'.1 5, E]]}
d (

= np.array([[[1, 2, 3], [4, 5, 611, [[1, 2, 3], [4, 5, €]1]])

print(a.ndim)
print(b.ndim}
print{c.ndim)
print(d.ndim)

Qutput
0

1
2

3

NumPy Array Indexing

Access Array Elements

Array indexing is the same as accessing an array element.
You can access an array element by referring to its index number.

The indexes in NumPy arrays start with O, meaning that the first element has
index 0, and the second has index 1 etc.

Example

Get the first element from the following array:
import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[8])

Output
1

Pyt h on A rrayS 2 semester LeCture 11

Example

Get third and fourth elements from the following array and add them.

import numpy as np
arr = np.array([1, 2, 3, 4])

print{arr[2] + arr[3])

Output
7

Access 2-D Arrays

To access elements from 2-D arrays we can use comma separated integers
representing the dimension and the index of the element.

Think of 2-D arrays like a table with rows and columns, where the dimension
represents the row and the index represents the column.

Example

Access the element on the first row, second column:

import numpy as np
arr = np.array([[1,2,3,4,5], [6,7,8,9,18]])

print({'2nd element on 1lst row: ', arr[@, 1])

Output

2nd element on 1st row: 2

Example

Access the element on the 2nd row, 5th column:

impDr“t numpy 45 np
arr = np.array([[1,2,3,4,5], [6,7,8,9,18]])

print('5th element on 2nd row: ', arr[l, 4])

Output

5th element on 2nd row: 10

Python Arrays 2 semester LeCture 11
Access 3-D Arrays

To access elements from 3-D arrays we can use comma separated integers
representing the dimensions and the index of the element.

Example

Access the third element of the second array of the first array:

import numpy as np

arr- = np.array([[[l1, 2, 3], [4, &5, &]], [[7, 8, 9], [168, 11, 12]]])

print{arr)

print(arr[8, 1, 2])

QOutput
&

Example Explained

arr[e, 1, 2] prints the value s.
And this is why:

The first number represents the first dimension, which contains two arrays:
[ILl, 2;:B]; 45, B]]

and:

[[7, 8, ©], [10, 11, 12]]

Since we selected e, we are left with the first array:

L1 2531 [3011

The second number represents the second dimension, which also contains two
arrays:

1, 2, 3]

and:

[4, 5, 6]

Since we selected 1, we are left with the second array:

[4, 5, 6]

The third number represents the third dimension, which contains three values:
4

5

6

Since we selected 2, we end up with the third value:

6

Python Arrays

Negative Indexing

Use negative indexing to access an array from the end.

Example

Print the last element from the 2nd dim:
import numpy as np

arr = np.array{[[1,2,3,4,5], [6,7,8,2,18]])

print('Last element from 2nd dim: ', arr[l, -1])

Output

Last element from 2nd dim: 10

2 semester LECtllI'E:] 1

Numpy Array 2 semester LE:I:tlll‘e 12

Slicing arrays

Slicing in python means taking elements from one given index to another given
index.

We pass slice instead of index like this: [start:end].

We can also define the step, like this: [start:end:step].

If we don't pass start its considered 0

If we don't pass end its considered length of array in that dimension

If we don't pass step its considered 1

Example

Slice elements from index 1 to index 5 from the following array:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])
print{arr[1:5])

Output
[2345]

Note: The result includes the start index, but excludes the end index.

Example

Slice elements from index 4 to the end of the array:

import numpy as np
arr = np.arrayf[1, 2, 3, 4, 5, 6, 7])

print{arr[4:])

QOutput
[56 7]

Numpy Array 2 semester LE:I:tlll‘e 12

Example

Slice elements from the beginning to index 4 (not included):

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[:4])

Qutput
[1234]

Negative Slicing
Use the minus operator to refer to an index from the end:

Example

Slice from the index 3 from the end to index 1 from the end:
import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])

print{arr[-3:-1])

Output
(5 6]

STEP

Use the step value to determine the step of the slicing:

Example

Return every other element from index 1 to index 5:
import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7])

print{arr[1:5:2])

Qutput
(2 4]

Numpy Array 2 semester LE:I:tlll‘e 12

Example

Return every other element from the entire array:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])

print(arr[::2])

Qutput
[1357]

Slicing 2-D Arrays

Example

From the second element, slice elements from index 1 to index 4 (not included):

import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 18]])

print(arr[l, 1:4])

Qutput
[7 & 9]

MNote: Remember that second efement has index 1.

Example

From both elements, return index 2:

import numpy as np
arr = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 18]])
print(arr[@:2, 2])

Output
[3 8]

Numpy Array 2 semester LE:I:tlll‘e 12

Example

From both elements, slice index 1 to index 4 (not included), this will return a 2-D
array:

import numpy as np
arr = np.array([[1, 2; 3, 4, 5], [6, 7, B, 9, 10]])

print(arr[@:2, 1:4])

Output
[[2 3 4]

[789]]

Numpy Array 2 semester LE:I:tlll‘e 12

NumPy Array Iterating

Iterating Arrays

[terating means going through elements one by one.

As we deal with multi-dimensional arrays in numpy, we can do this using the
basic for loop of Python.

If we iterate on a 1-D array it will go through each element one by one.

Example

[terate on the elements of the following 1-D array:
import numpy as np

arr = np.array([1, 2, 3])

far ¥ in arr:
print(x)

Output
1

2

3

Iterating 2-D Arrays

In a 2-D array, it will go through all the rows.

Example

[terate on the elements of the following 2-D array:

import numpy as np
arr = np.array([[1, 2, 3], [4, 5, 6]])
for ¥ in arr:
print(x)
Qutput

[123]
[45 6]

Numpy Array 2 semester LE:I:tlll‘e 12

Iterating 3-D Arrays

In a 3-D array it will go through all the 2-D arrays.

Example

[terate on the elements of the following 3-D array:

import numpy as np
arr = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [1e, 11, 12]]])

for ¥ in arr:
print({x)

Qutput
[[12 3]

[456]]
[[7 & 9]

[10 11 12]]

Numpy Array 2 semester LE:I:tlll‘e 12

NumPy Joining Array
Joining NumPy Arrays

Joining means putting contents of two or more arrays in a single array.

In SQL we join tables based on a key, whereas in NumPy we join arrays by axes.

We pass a sequence of arrays that we want to join to the concatenate() function,
along with the axis. If axis is not explicitly passed, it is taken as 0.

EJ(EII‘IIP'E Join two arrays

import numpy as np

arrl = np.array([1, 2, 3])
arr = np.array([dg 5! E])

arr = np.concatenate({arrl, arr2))

print(arr)

Output
[123456]

Split Into Arrays

The return value of the array split() method is an array containing each of the
split as an array.

If you split an array into 3 arrays, you can access them from the result just like
any array element:

Numpy Array 2 semester LE:I:tlll‘e 12

Example

Access the splitted arrays:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
newarr = np.array_split(arr, 3)
print(newarr[8])

print(newarr[1])

print(newarr[2])

Output
[12]
[34]
15 6]

Splitting 2-D Arrays

Use the same syntax when splitting 2-D arrays.

Use the array_split() method, pass in the array you want to split and the
number of splits you want to do.

Example

Split the 2-D array into three 2-D arrays.

import numpy as np
arr = np.array([[1, 2], [3; 4]; [5, 6], [7, 8], [9; 18], [11; 12]])

newarr = np.array_split{(arr, 3)
print (newarr)

Output
Larray([[1, 2],
3, 4]1), array([5, 6],
[7, 8]]), array([[9, 10],
(11, 12]])]

The example above returns three 2-D arrays.

Let's look at another example, this time each element in the 2-D arrays contains
3 elements.

Numpy Array 2 semester LE:I:tlll‘e 12

Example

Split the 2-D array into three 2-D arrays.

import numpy as np

arr = np.array(l[1, 2, 3], |4, 5, 6], [7, 8, 9], [19, 11, 12],
(13, 14, 15]., [16;, 17; IB1])

newarr = np.array_split{arr, 3)

print{newarr)
Output
larray([[1, 2, 3],
[4, 5, 6]]), array([[7, 8, 9],
[10, 11, 12]]1), array([[13, 14, 15],

[16, 17, 18]])]

The example above returns three 2-D arrays.

Numpy Array 2 semester LE:I:tlll‘e 12

NumPy Searching Arrays

Searching Arrays

You can search an array for a certain value, and return the indexes that get a
match.

To search an array, use the where() method.

Example

Find the indexes where the value is 4:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 4, 4])
X = np.wheref{arr == 4)

print(x)

Output
(array([3, 5, 6], dtype=int64),)

The example above will return a tuple: (array([2, 5, 6],)

Which means that the value 4 is present at index 3, 5, and 6.

Example

Find the indexes where the values are even:

import numpy as np
arr = npsarrayi[i, 2, 3. & 5. 6, 7, 8])
¥ = np.wheref{arri2 == @)

print(x)

Output
larray([1, 3, 5, 7], dtype=int564),)

10

Numpy Array 2 semester LE:I:tlll‘e 12

Example

Find the indexes where the values are odd;

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, B])

¥ = np.where(arr¥%2 == 1)
print{x)
Output

(array([0, 2, 4, 6], dtype=int&4),)

Search Sorted

There is a method called searchsorted() which performs a binary search in the
array, and returns the index where the specified value would be inserted to
maintain the search aorder.

The searchsorted() method is assumed to be used on sorted arrays.

Example

Find the indexes where the value 7 should be inserted:
import numpy as np

arr = np.array([6, 7, 8, 9])

¥ = np.searchsarted{arr, 7)

print(x)

Output
1

Example explained: The number 7 should be inserted on index 1 to remain the
sort order.

The method starts the search from the left and returns the first index where the
number 7 is no longer larger than the next value.

14

NumPy Array 2semester LeCture 12
Search From the Right Side

By default the left most index is returned, but we can give side="right' to return
the right most index instead.

Example

Find the indexes where the value 7 should be inserted, starting from the right:
import numpy as np

arr = np.array([6, 7, 8, 9])

x = np.searchsorted(arr, 7, side="right')

print(x)

Output
2

Example explained: The number 7 should be inserted on index 2 to remain the
sort order.

The method starts the search from the right and returns the first index where the
number 7 is no longer less than the next value.

Multiple Values

To search for more than one value, use an array with the specified values.

Example

Find the indexes where the values 2, 4, and 6 should be inserted:
import numpy as np

arr = np.array{([1, 3, 5, 7])

¥ = np.searchsorted{arr, [2, 4, 6])

print(x)

Qutput
(12 3]

The return value is an array: [1 2 3] containing the three indexes where 2, 4, 6
would be inserted in the original array to maintain the order.

12

Numpy Array 2 semester LE:I:tlll‘e 12

NumPy Sorting Arrays
Sorting Arrays

Sorting means putting elements in an ordered segquence.

Ordered seqguence is any sequence that has an order corresponding to elements,
like numeric or alphabetical, ascending or descending.

The NumPy ndarray object has a function called sort(}, that will sort a specified
array.

Example

Sort the array:

import numpy as np
arr = np.array{([3, 2, @, 1])
print(np.sort{arr))

OQutput

[©12 3]

Note: This method returns a copy of the array, leaving the original array
unchanged.

You can also sort arrays of strings, or any other data type:

Example

Sort the array alphabetically:

import numpy as np
arr = np.array(["banana’, 'cherry', "apple’'])
print(np.sort{arr))

Output

['apple’ 'banana’ ‘cherry’]
13

Numpy Array 2 semester LE:I:tlll‘e 12

Example

Sort a boolean array:

import numpy as np
arr = np.array([True, False, True])
print{np.sort{arr))

Output

False True True]

Sorting a 2-D Array

If you use the sort() method on a 2-D array, both arrays will be sorted:

Example

Sort a 2-D array:

import numpy as np
arr = np.array{[[E, 2, 4]: [EJ 4, 1]]}
print(np.sort{arr))

Output

[[2 3 4]

[G15]]

14

Numpy Array 2 semester LE:I:tlll‘e 12

NumPy Filter Array
Filtering Arrays

Getting some elements out of an existing array and creating a new array out of
them is called filtering.

In NumPy, you filter an array using a boolean index list.
A boolean index list is a list of booleans corresponding to indexes in the array.

If the value at an index is True that element is contained in the filtered array, if

the value at that index is False that element is excluded from the filtered array.

Example

Create an array from the elements on index 0 and 2:

import numpy as np

arr = np.array{[41, 42, 43, 441])
¥ = [True, False, True, False]
newarr = arr[x]

print(newarr)

Output
[41 43]

The example above will return (41, 437, why?

Because the new array contains only the values where the filter array had the
value True, in this case, index 0 and 2.

15

Numpy Array 2 semester LE:I:tlll‘e 12

Creating the Filter Array

In the example above we hard-coded the True and rFalse values, but the common
use is to create a filter array based on conditions.

Example

Create a filter array that will return only values higher than 42:

import numpy as np
arr = np.array([41, 42, 43, 44])

Create an empty list
filter_arr = []

go through each element in arr
for element in arr:
if the element is higher than 42, set the value to True, otherwise
False:
if element > 42:
filter_arr.append(True)
else:
filter arr.append(False)

newarr = arr[filter_arr]

print(filter_arr)
print{newarr)

QOutput
[False, False, True, True]

[43 44]

16

NumPy Array 2 semester LE:I:tlll‘e 12

Example

Create a filter array that will return only even elements from the original array:

import numpy as np
arr = np.array([1, 2, 3, 4, 5, 6, 7])

Create an empty list
filter arr = []
go through each element in arr

for element in arr:
if the element is completely divisble by 2, set the wvalue to True,

otherwlise False
if element % 2 == @:
filter arr.append(True)
else:
filter_arr.append(False)

newarr = arr[filter_arr]

print(filter _arr)
print{newarr)

Output

[False, False, True, True]

43 44]

17

Numpy Array 2 semester LE:I:tlll‘e 12

Creating Filter Directly From Array

The above example is quite a common task in NumPy and NumPy provides a nice
way to tackle it.

We can directly substitute the array instead of the iterable variable in our
condition and it will work just as we expect it to.

Example

Create a filter array that will return only values higher than 42:

import numpy as np

arr = np.array([41, 42, 43, 44])
filter_arr = arr > 42

newarr = arr[filter_arr]
print{filter_arr)

print (newarr)

Output

[False False True True]

43 44]

Example

Create a filter array that will return only even elements from the original array:

import numpy as np

arr- = np.array([1, 2, 3, 4, 5, 6, 7])
filter arr = arr % 2 == 8

newarr = arr[flilter_arr]
print(filter_arr)

print (newarr)

Output

[False True False True False True False]

[2 48]

18

FiIEI Hﬂl‘ld “I"I 2 semester LECtU re 13

Python File Open

File handling is an important part of any web application.

Python has several functions for creating, reading, updating, and deleting
files.

File Handling

The key function for working with files in Python is the cpen() function.
The opent) function takes two parameters,; filename, and mode.
There are four different methods (modes) for opening a file:

"r" - Read - Default value. Opens a file for reading, error if the file does not exist
"a" - Append - Opens a file for appending, creates the file if it does not exist
“w* = Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists
In addition, you can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

"b* - Binary - Binary mode (e.g. images)

Syntax

To open a file for reading it is enough to specify the name of the file:
f = open{“"demofile.txt")
The code above is the same as:

f = open{"demofile.txt", "rt")

Because "r" for read, and "t" for text are the default values, you do not need to
specify them.

Note: Make sure the file exists, or else you will get an error.

FiIEI Hﬂl‘ld “I"I 2 semester LECtU re 13

Open a File on the Server

Assume we have the following file, located in the same folder as Python:

demofile.txt

Hello! Welcome to demofile.txt
This +ile is faor testing purposes.
Good Luck!

To open the file, use the built-in cpen() function.

The epen() function returns a file object, which has a read() method for reading
the content of the file:

Example

+ = open("demofile.txt™, "r")
print(f.read(})

If the file is located in a different location, you will have to specify the file path,
like this:

Example

Open a file on a different location:

£ = open{"D:\\myfiles\welcome.txt", "r")
print(f.read())

Read Only Parts of the File

By default the read() method returns the whole text, but you can also specify how
many characters you want to return:

Example

Return the 5 first characters of the file:

f = open("demofile.txt", "r")
print(f.read(5))

FiIEI Hﬂl‘ld “I"I 2 semester LECtU re 13
Read Lines

You can return one line by using the readline() method:

Example

Read one line of the file:

f = open(“demofile.txt", "“r")
print(f.readline())

By calling readline() two times, you can read the two first lines:

Example

Read two lines of the file:

f = open{“"demofile.txt", "r")
print(f.readline())
print(f.readline())

By looping through the lines of the file, you can read the whole file, line by line:

Example

Loop through the file line by line:

[1] ur

f = open("demofile.txt", "r")
for x in f:
print(x)

Close Files

It is a good practice to always close the file when you are done with it.

Example

Close the file when you are finish with it:
f = gpen{"demofile.txt", "r")
print(f.readline())

f.close()

Note: You should always close your files, in some cases, due to buffering,
changes made to a file may not show until you clese the file.

F“E Hﬂl‘ld “I"I 2 semester LECtU re 13

Python File Write
Write to an Existing File

To write to an existing file, you must add a parameter to the open() function:
"a" - Append - will append to the end of the file

"w" - Write - will overwrite any existing content

Example

Open the file "demofile2.txt" and append content to the file:

£ = open("demofile.txt", "a")
f.write("Now the file has more content!")
f.close(}

#open and read the file after the appending:
f = gpen("demofile.txt", "r")
print{f.read{))

Example

Open the file "demofile.txt” and overwrite the content:

f = open{"demofile.txt", "w")
f.write{"Woops! I have deleted the content!"™)
f.close()

#open and read the file after the averwriting:

f = open{“"demofile.txt", "r")
print(f.read())

Note: the "w" method will overwrite the entire file.

Create a New File

To create a new file in Python, use the open() method, with one of the following
parameters:

"x" - Create - will create a file, returns an error if the file exist
"a" - Append - will create a file if the specified file does not exist

"w" - Write - will create a file if the specified file does not exist

File Handlin
Example

Create a file called "myfile.txt":

f = open{"myfile.txt", "x")

Result: a new empty file is created!

Example

Create a new file if it does not exist:

f = open("myfile.txt", "w")

2 semester LECtU re 13

FiIEI Hﬂl‘ld “I"I 2 semester LECtU re 13

Python Delete File

Delete a File

To delete a file, you must import the OS5 module, and run
its os.remove() function:

Example

Remove the file "demofile.txt";

import os
os.remove("demofile.txt")

Check if File exist:

To avoid getting an error, you might want to check if the file exists before you try
to delete it:

Example

Check if file exists, then delete it:

import os

if os.path.exists({"demofile.txt"):
os.remove{ "demofile.txt")

else:
print{“"The file does not exist")

Delete Folder

To delete an entire folder, use the os.rmdir() method:

Example

Remove the folder "myfolder":

import os
os.rmdir{ "myfolder")

Note: You can only remove empty folders.

