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Propositional Logic

Introduction

Logic is the basis of all mathematical reasoning. It has practical applications in

areas of computer science as well as to many other fields of study. In mathematics,

we must understand what makes up a correct mathematical argument, that is, a

proof. Once we prove that a mathematical statement is true, we call it a theo-

rem. A collection of theorems on a topic organize what we know about this topic.

To learn a mathematical topic, a person needs to actively construct mathematical

arguments on this topic. Moreover, knowing the proof of a theorem often makes

it possible to modify the result to fit new situations. Everyone knows that proofs

are important throughout mathematics. The rules of logic give precise meaning to

mathematical statements. These rules are used to distinguish between valid and

invalid mathematical arguments. In this chapter, we will explain what makes up a

correct mathematical argument and introduce tools to construct these arguments.

These basic tools will help us to develop different proof methods that will enable us

to prove many different types of results in the later chapters.

1.1 Basic Concepts in Logic

Our discussion begins with an introduction to the basic building blocks of logic viz.,

propositions.

Definition 1.1. A proposition is a declarative sentence (that is, a sentence that

declares a fact) that is either true or false, but not both.

All the following declarative sentences are propositions.
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Lec 1. PROPOSITIONAL LOGIC 2

1. New Delhi, is the capital of India.

2. 2 + 1 = 3.

3. 2 + 1 = 2.

Here propositions 1 and 2 are true, whereas 3 is false.

Some sentences that are not propositions are:

1. How are you?

2. Read this carefully.

3. x+ 1 = 2.

4. x+ y = z.

Sentences 1 and 2 are not propositions because they are not declarative sentences.

Sentences 3 and 4 are not propositions because they are neither true nor false. Note

that each of the sentences 3 and 4 can be turned into a proposition if we assign

values to the variables.

We use letters to denote propositional variables (or statement variables),

that is, variables that represent propositions, just as letters are used to denote

numerical variables. The conventional letters used for propositional variables are

p, q, r, s, . . .. The truth value of a proposition is true, denoted by T, if it is a true

proposition, and the truth value of a proposition is false, denoted by F, if it is a

false proposition.

Definition 1.2. The area of logic that deals with propositions is called the propo-

sitional calculus or propositional logic.

Propositional calculus was first developed systematically by the greek philosopher

Aristotle more than 2300 years ago.

Definition 1.3. Compound propositions are new propositions formed from ex-

isting propositions using logical operators.

Definition 1.4. Let p be a proposition. The negation of p, denoted by ¬p, is the

statement “It is not the case that p.” The proposition ¬p is read “not p.” The truth

value of the negation of p,¬p, is the opposite of the truth value of p.

The negation operator constructs a new proposition from a single existing propo-

sition. We will now introduce the logical operators that are used to form new

propositions from two or more existing propositions. These logical operators are

also called connectives.

true, false.

Compound propositions
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p ¬p
T F
F T

Table 1.1: Negation

Definition 1.5. Let p and q be propositions. The conjunction of p and q, denoted

by p∧ q, is the proposition “p and q.” The conjunction p∧ q is true when both p and

q are true and is false otherwise.

p q p ∧ q
T T T
T F F
F T F
F F F

Table 1.2: Conjunction

p q p ∨ q
T T T
T F T
F T T
F F F

Table 1.3: Disjunction

Table 1.2 displays the truth table of p ∧ q. This table has a row for each of the

four possible combinations of truth values of p and q. The four rows correspond to

the pairs of truth values TT, TF, FT, and FF, where the first truth value in the

pair is the truth value of p and the second truth value is the truth value of q. Note

that in logic the word “but” sometimes is used instead of “and” in a conjunction.

For example, the statement “The sun is shining, but it is raining” is another way of

saying “The sun is shining and it is raining.”

Definition 1.6. Let p and q be propositions. The disjunction of p and q, denoted

by p ∨ q, is the proposition “p or q.” The disjunction p ∨ q is false when both p and

q are false and is true otherwise.

Table 1.3 displays the truth table for p ∨ q. The use of the connective “or” in

a disjunction corresponds to one of the two ways the word “or” is used in English,

namely, in an inclusive way. Thus, a disjunction is true when at least one of the two

propositions in it is true. Sometimes, we use “or” in an exclusive sense. When the

“exclusive or” is used to connect the propositions p and q, the proposition “p or q

(but not both)” is obtained.

Definition 1.7. Let p and q be propositions. The exclusive or of p and q, denoted

by p ⊕ q, is the proposition that is true when exactly one of p and q is true and is

false otherwise.

AND OR
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Lec 1. PROPOSITIONAL LOGIC 4

The truth table for the exclusive or of two propositions is displayed in Table 1.4.

Definition 1.8. Let p and q be propositions. The conditional statement p → q

is the proposition “if p, then q.” The conditional statement p → q is false when p is

true and q is false, and true otherwise.

p q p ⊕ q
T T F
T F T
F T T
F F F

Table 1.4: Exclusive or

p q p → q
T T T
T F F
F T T
F F T

Table 1.5: Conditional Statement

In the conditional statement p → q, p is called the hypothesis (or antecedent or

premise) and q is called the conclusion (or consequence). The statement p → q is

called a conditional statement because p → q asserts that q is true on the condition

that p holds. A conditional statement is also called an implication. The truth

table for the conditional statement p → q is shown in Table 1.5. Note that the

statement p → q is true when both p and q are true and when p is false (no matter

what truth value q has).

Because conditional statements play such an essential role in mathematical reason-

ing, a variety of terminology is used to express p → q. A useful way to understand

the truth value of a conditional statement is to think of an obligation or a contract.

For example, a pledge many politicians make when running for office is “If I am

elected, then I will lower taxes.” If the politician is elected but does not lowers

taxes, then and then only the voters can say that the politician has broken the

campaign pledge. This scenario corresponds to the case when p is true but q is false

in p → q.

You will encounter most if not all of the following ways to express this conditional

statement:
“if p, then q” “p implies q”
“if p, q” “p only if q”
“p is sufficient for q” “a sufficient condition for q is p”
“q if p” “q whenever p”
“q when p” “q is necessary for p”
“q unless ¬p” “q follows from p”
“a necessary condition for p is q”.

conditional statement
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Example 1.1. Let p be the statement “ learns discrete mathematics” and q the
statement “ will find a good job.” Express the statement p→ q as a statement in

English.

Solution: From the definition of conditional statements, we see that when

p is the statement “ learns discrete mathematics”

q is the statement “ will find a good job,”
p→ q represents the statement “If learns discrete mathematics, then he will find a

good job.”

There are many other ways to express this conditional statement in English.

Among the most natural of these are:

“ will find a good job when learns discrete mathematics.”

“For to get a good job, it is sufficient for him to learn discrete mathematics.” and

“ will find a good job unless does not learn discrete mathematics.” and so on.

1.1.1 Converse, Contrapositive, and Inverse

We can form some new conditional statements starting with a conditional statement

p → q. In particular, there are three related conditional statements that occur so

often that they have special names.

Definition 1.9. The proposition q → p is called the converse of p → q. The

contrapositive of p → q is the proposition ¬q → ¬p. The proposition ¬p → ¬q is

called the inverse of p → q.

From the truth table we can easily check that the truth values of p → q and

¬q → ¬p are same. This leads us to the next definition.

Definition 1.10. When two compound propositions always have the same truth

value we call them equivalent.

The converse and the inverse of a conditional statement are also equivalent.

Example 1.2. What are the contrapositive, the converse, and the inverse of the

conditional statement “The home team wins whenever it is raining?”

Solution: Because “q whenever p” is one of the ways to express the conditional

statement p → q, the original statement can be rewritten as “If it is raining, then the

Example 1.2.
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home team wins.” Consequently, the contrapositive of this conditional statement is

“If the home team does not win, then it is not raining.” The converse is “If the home

team wins, then it is raining.” The inverse is “If it is not raining, then the home

team does not win.” Only the contrapositive is equivalent to the original statement.

It can be easily verified by the truth table.

We now introduce another way to combine propositions that expresses that two

propositions have the same truth value.

Definition 1.11. Let p and q be propositions. The biconditional statement

p ↔ q is the proposition “p if and only if q.” The biconditional statement p ↔ q is

true when p and q have the same truth values, and is false otherwise. Biconditional

statements are also called bi-implications.

The truth table for p ↔ q is shown in Table 1.6. There are some other common

ways to express p ↔ q : “p is necessary and sufficient for q”, “if p then q, and

conversely”, “p iff q.” The last way of expressing the biconditional statement p ↔ q

uses the abbreviation “iff” for “if and only if.” Note that p ↔ q has exactly the

same truth value as (p → q) ∧ (q → p). We have now introduced four important

p q p ↔ q
T T T
T F F
F T F
F F T

Table 1.6: Biconditional Statement

logical connectives–conjunctions, disjunctions, conditional statements, and bicon-

ditional statements–as well as negations. We can use these connectives to build

up complicated compound propositions involving any number of propositional vari-

ables. We can use truth tables to determine the truth values of these compound

propositions. We use a separate column to find the truth value of each compound

expression that occurs in the compound proposition as it is built up. The truth

values of the compound proposition for each combination of truth values of the

propositional variables in it is found in the final column of the table.

Example 1.3. Construct the truth table of the compound proposition

(p ∨ ¬q) → (p ∧ q).

X-NOR

Example 1.3.
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Lec 1. PROPOSITIONAL LOGIC 7

Solution: Because this truth table involves two propositional variables p and q,

there are four rows in this truth table, one for each of the pairs of truth values TT,

TF, FT, and FF. The first two columns are used for the truth values of p and q,

respectively. In the third column we find the truth value of ¬q, needed to find the

truth value of p ∨ ¬q, found in the fourth column. The fifth column gives the truth

value of p ∧ q. Finally, the truth value of (p ∨ ¬q) → (p ∧ q) is found in the last

column. The resulting truth table is shown in Table 1.7.

p q ¬q p ∨ ¬q p ∧ q (p ∨ ¬q) → (p ∧ q)
T T F T T T
T F T T F F
F T F F F T
F F T T F F

Table 1.7: The Truth table

1.1.2 Precedence of Logical Operators

We can construct compound propositions using the negation operator and the logical

operators defined so far. We will generally use parentheses to specify the order in

which logical operators in a compound proposition are to be applied. For instance,

(p ∨ q) ∧ (¬r) is the conjunction of p ∨ q and ¬r. However, to reduce the number of

parentheses, we specify that the negation operator is applied before all other logical

operators. This means that ¬p∧ q is the conjunction of ¬p and q, namely, (¬p)∧ q,

not the negation of the conjunction of p and q, namely ¬(p ∧ q).

Another general rule of precedence is that the conjunction operator takes precedence

over the disjunction operator, so that p∨q∧r means p∨(q∧r) rather than (p∨q)∧r.

Because this rule may be difficult to remember, we will continue to use parentheses

so that the order of the disjunction and conjunction operators is clear. Table 1.8

displays the precedence levels of the logical operators.

Operator Precedence
¬ 1
∧ 2
∨ 3
→ 4
↔ 5

Table 1.8: Precedence of Logical Operators
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1.2 Propositional Equivalences

An important type of step used in a mathematical argument is the replacement of

a statement with another statement with the same truth value. Because of this,

methods that produce propositions with the same truth value as a given compound

proposition are used extensively in the construction of mathematical arguments.

Note that we will use the term “compound proposition” to refer to an expression

formed from propositional variables using logical operators, such as p∧ q. We begin

our discussion with a classification of compound propositions according to their

possible truth values.

Definition 1.12. A compound proposition that is always true, no matter what the

truth values of the propositional variables that occur in it, is called a tautology. A

compound proposition that is always false is called a contradiction. A compound

proposition that is neither a tautology nor a contradiction is called a contingency.

Tautologies and contradictions are often important in mathematical reasoning.

An example of a tautology is p∨¬p whereas an example for a contradiction is p∧¬p.
The following truth table illustrates this.

p ¬p p ∨ ¬p p ∧ ¬p
T F T F
F T T F

Table 1.9: Examples of Tautology and Contradiction

1.2.1 Logical Equivalences

Compound propositions that have the same truth values in all possible cases are

called logically equivalent. We can also define the notion as follows.

Definition 1.13. The compound propositions p and q are called logically equiva-

lent if p ↔ q is a tautology. The notation p ≡ q denotes that p and q are logically

equivalent.

One way to determine whether two compound propositions are equivalent is to

use a truth table.
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Lec 2. PROPOSITIONAL LOGIC 2

Example 1.4. Show that ¬(p ∨ q) and ¬p ∧ ¬q are logically equivalent.

Solution: The truth tables for these compound propositions are displayed in Table

1.10. Because the truth values of the compound propositions ¬(p ∨ q) and ¬p ∧ ¬q
agree for all possible combinations of the truth values of p and q, it follows that

¬(p ∨ q) ↔ (¬p ∧ ¬q) is a tautology and that these compound propositions are

logically equivalent.

p q p ∨ q ¬(p ∨ q) ¬p ¬q ¬p ∧ ¬q ¬(p ∨ q) ↔ (¬p ∧ ¬q)
T T T F F F F T
T F T F F T F T
F T T F T F F T
F F F T T T T T

Table 1.10: The truth table

Example 1.5. Show that p → q and ¬p ∨ q are logically equivalent.

Solution: We construct the truth table for these compound propositions in Ta-

ble 1.11. Because the truth values of ¬p ∨ q and p → q agree, they are logically

equivalent.

p q ¬p ¬p ∨ q p → q
T T F T T
T F F F F
F T T T T
F F T T T

Table 1.11: The truth table

We will now establish a logical equivalence of two compound propositions involv-

ing three different propositional variables p, q, and r. To use a truth table to establish

such a logical equivalence, we need eight rows, one for each possible combination of

truth values of these three variables. In general, 2n rows are required in the truth

table to establish logical equivalence involving n propositional variables.

Table 1.12 demonstrates that p∨(q∧r) and (p∨q)∧(p∨r) are logically equivalent.

Example 1.6. Show that p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent.

This is the distributive law of disjunction over conjunction.

Solution: We construct the truth table for these compound propositions in Table

Example 1.4.

Example 1.5.
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p q r q ∧ r p ∨ (q ∧ r) p ∨ q p ∨ r (p ∨ q) ∧ (p ∨ r)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table 1.12: The truth table

1.12. Because the truth values of p∨(q∧r) and (p∨q)∧(p∨r) agree, these compound

propositions are logically equivalent.

Equivalence Name Equivalence Name
p ∧ T ≡ p Identity (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) Associative
p ∨ F ≡ p laws (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) laws
p ∨ T ≡ T Domination p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) Distributive
p ∧ F ≡F laws p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) laws
p ∨ p ≡ p Idempotent ¬(p ∧ q) ≡ ¬p ∨ ¬q De Morgan’s
p ∧ p ≡ p laws ¬(p ∨ q) ≡ ¬p ∧ ¬q laws
¬(¬p) ≡ p Double p ∨ (p ∧ q) ≡ p Absorption

negation law p ∧ (p ∨ q) ≡ p laws
p ∨ q ≡ q ∨ p Commutative p ∨ ¬p ≡ T Negation
p ∧ q ≡ q ∧ p laws p ∧ ¬p ≡ F laws

Table 1.13: Logical Equivalences

Table 1.13 contains some important equivalences. In these equivalences, T de-

notes the compound proposition that is always true and F denotes the compound

proposition that is always false. Note that p1∨ p2∨ . . .∨ pn and p1∧ p2∧ . . .∧ pn are

well defined whenever p1, p2, . . . , pn are propositions. Also De Morgan’s laws extend

to

¬(p1 ∨ p2 ∨ . . . ∨ pn) ≡ (¬p1 ∧ ¬p2 ∧ . . . ∧ ¬pn)
and

¬(p1 ∧ p2 ∧ . . . ∧ pn) ≡ (¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn).
Example 1.7. Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by

developing a series of logical equivalences.

Solution: We will use one of the equivalences in Table 1.13 at a time, starting with

¬(p ∨ (¬p ∧ q)) and ending with ¬p ∧ ¬q. We have the following equivalences.
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Lec 2. PROPOSITIONAL LOGIC 4

Equivalence
p → q ≡ ¬p ∨ q

p → q ≡ ¬q → ¬p Logical Equivalences
p ∨ q ≡ ¬p → q Involving

p ∧ q ≡ ¬(p → ¬q) Conditional Statements
¬(p → q) ≡ p ∧ ¬q

(p → q) ∧ (p → r) ≡ p → (q ∧ r)
(p → r) ∧ (q → r) ≡ (p ∨ q) → r
(p → q) ∨ (p → r) ≡ p → (q ∨ r)
(p → r) ∨ (q → r) ≡ (p ∧ q) → r

p ↔ q ≡ (p → q) ∧ (q → p)
p ↔ q ≡ ¬p ↔ ¬q Logical Equivalences Involving

p ↔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q) Biconditional Statements
¬(p ↔ q) ≡ p ↔ ¬q

Table 1.14: Logical Equivalences

¬(p ∨ (¬p ∧ q)) ≡ ¬p ∧ ¬(¬p ∧ q) by the second De Morgan law
≡ ¬p ∧ [¬(¬p) ∨ ¬q] by the first De Morgan law
≡ ¬p ∧ (p ∨ ¬q) by the double negation law
≡ (¬p ∧ p) ∨ (¬p ∧ ¬q) by the second distributive law
≡ F ∨(¬p ∧ ¬q) by the second negation law
≡ (¬p ∧ ¬q)∨ F by the commutative law

for disjunction
≡ ¬p ∧ ¬q by the identity law for F

Consequently ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent.

Logical equivalences involving conditional statements and biconditional statements

are given in the table 1.14. These equivalences are important as they form basic

tools for proving theorems. Few theorems involve “if and only if” p ↔ q. To prove

the theorem of this type we use the equivalence p ↔ q ≡ (p → q)∧ (q → p). So it is

enough to prove the statements p → q and q → p separately.

Remark 1.1. A logical equivalence can be proved by using either a truth table or by

using a chain of known logical equivalences. Also a tautology can be proved by using

either a truth table or by using logical equivalences.

Example 1.8. Show that (p ∧ q) → (p ∨ q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical equivalences

to demonstrate that it is logically equivalent to T.
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Lec 2. PROPOSITIONAL LOGIC 5

(p ∧ q) → (p ∨ q) ≡ ¬(p ∧ q) ∨ (p ∨ q) since p → q ≡ ¬p ∨ q
≡ (¬p ∨ ¬q) ∨ (p ∨ q) by the first De Morgan law
≡ (¬p ∨ p) ∨ (¬q ∨ q) by the associative and comm-

utative laws for disjunction
≡ T∨T by the commutative and

negation laws for disjunction.
≡ T by the domination law

Thus we have shown that (p ∧ q) → (p ∨ q) is a tautology.

(Note: This could also be done using a truth table.)

Logic has practical applications to the design of computing machines, to the speci-

fication of systems, to artificial intelligence, to computer programming, to program-

ming languages, and to other areas of computer science, as well as to many other

fields of study. In the next chapter we will introduce the concepts which will help

us to express the meaning of statements in mathematics and natural language.
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The Inclusion and Exclusion Principle

Introduction

The principle of Inclusion and Exclusion is doubtless very old; its origin is probably

untraceable. The principle of Inclusion and Exclusion is sometimes referred to as

“Poincare’s Theorem”. J. J. Sylvester and Danial da Silva are the two mathemati-

cians associated with the combinatorial form of the principle.

The principle of Inclusion and Exclusion is a way of thinking about combining sets

with overlapping elements.

3.1 The Subtraction Rule

If a task can be done in either n1 ways or n2 ways, then the number of ways to do

the task is n1 + n2 minus the number of ways to do the task that are common to

the two different ways.

The subtraction rule is also known as the principle of inclusion-exclusion, especially

when it is used to count the number of elements in the union of two sets. Suppose

that A1 and A2 are sets. Then, there are |A1| ways to select an element from A1 and

|A2| ways to select an element from A2. The number of ways to select an element

from A1 or from A2, that is, the number of ways to select an element from their

union, is the sum of the number of ways to select an element from A1 and the

number of ways to select an element from A2, minus the number of ways to select

an element that is in both A1 and A2. Because there are |A1 ∪A2| ways to select an

element in either A1 or in A2, and |A1 ∩ A2| ways to select an element common to

both sets, we have |A1 ∪ A2| = |A1|+ |A2| − |A1 ∩ A2|.
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Example 3.1. How many bit strings of length eight either start with a 1 bit or end 
with the two bits 00?
Solution: We can construct a bit string of length eight that either starts with 
a 1 bit or ends with the two bits 00, by constructing a bit string of length eight 
beginning with a 1 bit or by constructing a bit string of length eight that ends with 
the two bits 00. We can construct a bit string of length eight that begins with a 
1 in 27 = 128 ways. This follows by the product rule, because the first bit can be 
chosen in only one way and each of the other seven bits can be chosen in two ways. 
Similarly, we can construct a bit string of length eight ending with the two bits 00, 
in 26 = 64 ways. This follows by the product rule, because each of the first six bits 
can be chosen in two ways and the last two bits can be chosen in only one way. 
Some of the ways to construct a bit string of length eight starting with a 1 are the 
same as the ways to construct a bit string of length eight that ends with the two bits

00. There are 25 = 32 ways to construct such a string. This follows by the product

rule, because the first bit can be chosen in only one way, each of the second through

the sixth bits can be chosen in two ways, and the last two bits can be chosen in one

way. Consequently, the number of bit strings of length eight that begin with a 1 or

end with a 00, which equals the number of ways to construct a bit string of length

eight that begins with a 1 or that ends with 00, equals 128 + 64− 32 = 160.

Example 3.2. A computer company receives 350 applications from graduates for a 
job. Suppose that 220 of these applicants majored in computer science, 147 majored 
in business, and 51 majored both in computer science and in business. How many 
of these applicants majored neither in computer science nor in business?
Solution: To find the number of these applicants who majored neither in computer 
science nor in business, we can subtract the number of students who majored either
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Lec_3. THE INCLUSION AND EXCLUSION PRINCIPLE 3

in computer science or in business (or both) from the total number of applicants.

Let A1 be the set of students who majored in computer science and A2 the set of

students who majored in business. Then A1∪A2 is the set of students who majored

in computer science or business (or both), and A1 ∩ A2 is the set of students who

majored both in computer science and in business. By the subtraction rule the

number of students who majored either in computer science or in business (or both)

equals |A1 ∪ A2| = |A1| + |A2| − |A1 ∩ A2| = 220 + 147 − 51 = 316. We conclude

that 350 − 316 = 34 of the applicants majored neither in computer science nor in

business.

3.2 The Principle of Inclusion and Exclusion

The principle of Inclusion and Exclusion, hereafter called PIE, gives a formula for

the size of the union of n finite sets. We assume that the universe is finite. It

is a generalization of the familiar formulas |A ∪ B| = |A| + |B| − |A ∩ B| and
|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C|.
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Theorem 3.1. If P1, P 2, . . . , P n be finite sets, then
|P1 ∪ P2 ∪ . . .∪ Pn| = |P1| + |P2| + . . .+ |Pn| − |P1 ∩ P2| − |P1 ∩ P3| − . . . |Pn−1 ∩ Pn| + 
|P1 ∩P2 ∩P3|+ |P1 ∩P2 ∩P4|+ . . .+ |Pn−2 ∩Pn−1 ∩Pn|− . . .+(−1)n+1|P1 ∩P2 ∩ . . .∩Pn|
That is

|P1 ∪ P2 ∪ . . . ∪ Pn| =
∑
1≤i≤n

|Pi| −
∑

1≤i<j≤n
|Pi ∩ Pj|

+
∑

1≤i<j<k≤n
|Pi ∩ Pj ∩ Pk| − . . .+ (−1)n+1|P1 ∩ P2 ∩ ... ∩ Pn|

.

That is, the cardinality of the union P1∪P2∪ ...∪Pn can be calculated by including

(adding) the sizes of all of the sets together, then excluding (subtracting) the sizes

of the intersections of all pairs of sets, then including the sizes of the intersections of

all triples, excluding the sizes of the intersections of all quadruples, and so on until,

finally, the size of the intersection of all of the sets has been included or excluded,

as appropriate. If n is odd it is included, and if n is even it is excluded.

It is important to remember that all sets involved must be finite.

We should try to use PIE when we are trying to count something described by a

bunch of conditions, any number of which might hold at the same time. Often PIE

is used in conjunction with counting the complement. That is, you use it to count

the number of objects in the universe that you do not want, and subtract this from

the size of the universe (which needs to be finite). In applying PIE, the setup is of

great importance. You need to be clear about what the sets are (what it means to

belong to one or more of them), what the universe is, and how the principle gives

you what you want. Once you have done this, things often reduce to more or less

straightforward counting problems.

Note: In PIE, for n sets there are (n1) sums of one sets, there are (n2) sums of

intersection of two sets, there are (n3) sums of intersections of three sets,...,there are

(nn) sums of intersections of n sets.If n=4 then there are (41) = 4 sums of one sets,

(42) = 6 sums of intersections of two sets, (43) = 4 sums of intersection of three sets

and (44) = 1 sum of intersections of three sets.

Example 3.3. In a discrete mathematics class every student is a major in computer 
science or mathematics, or both. The number of students having computer science 
as a major (possibly along with mathematics) is 25; the number of students hav-
ing mathematics as a major (possibly along with computer science) is 13; and the
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number of students majoring in both computer science and mathematics is 8. How

many students are in this class?

Solution: Let A be the set of students in the class majoring in computer science

and B be the set of students in the class majoring in mathematics. Then A ∩ B

is the set of students in the class who are joint mathematics and computer science

majors. Because every student in the class is majoring in either computer science or

mathematics (or both), it follows that the number of students in the class is |A∪B|.
Therefore, |A ∪ B| = |A| + |B| − |A ∩ B| = 25 + 13 − 8 = 30. Therefore, there are

30 students in the class.

Example 3.4. How many positive integers not exceeding 1000 are divisible by 7 or 
11?

Solution: Let A be the set of positive integers not exceeding 1000 that are divisible

by 7, and let B be the set of positive integers not exceeding 1000 that are divisible

by 11. Then A ∪ B is the set of integers not exceeding 1000 that are divisible by

either 7 or 11, and A∩B is the set of integers not exceeding 1000 that are divisible

by both 7 and 11. We know that among the positive integers not exceeding 1000

there are

⌊
1000

7

⌋
integers divisible by 7 and

⌊
1000

11

⌋
divisible by 11. Because 7 and

11 are relatively prime, the integers divisible by both 7 and 11 are those divisible by

7× 11. Consequently, there are

⌊
1000

11× 7

⌋
positive integers not exceeding 1000 that
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are divisible by both 7 and 11. It follows that there are

|A∪B| = |A|+ |B| − |A∩B| = 142+ 90− 12 = 220 positive integers not exceeding

1000 that are divisible by either 7 or 11.

Example 3.5. Suppose that there are 1807 students in first year at your college. Of 
these, 453 are taking a course in computer science, 567 are taking a course in 
mathematics, and 299 are taking courses in both computer science and mathematics. 
How many are not taking a course either in computer science or in mathematics?

Solution: To find the number of first year students who are not taking a course

in either mathematics or computer science, subtract the number that are taking a

course in either of these subjects from the total number of first year students. Let

A be the set of all first year students taking a course in computer science, and let B

be the set of all first year students taking a course in mathematics. It follows that

|A| = 453, |B| = 567, and |A∩B| = 299. The number of first year students taking a

course in either computer science or mathematics is |A∪B| = |A|+ |B| − |A∩B| =
453+567−299 = 721. Consequently, there are 1807−721 = 1086 first year students

who are not taking a course in computer science or mathematics.

Example 3.6. A total of 1232 students have taken a course in Spanish, 879 have 
taken a course in French, and 114 have taken a course in Russian. Further, 103 have 
taken courses in both Spanish and French, 23 have taken courses in both Spanish and 
Russian, and 14 have taken courses in both French and Russian. If 2092 students 
have taken at least one of Spanish, French, and Russian, how many students have 
taken a course in all three languages?
Solution: Let S be the set of students who have taken a course in Spanish, F the 
set of students who have taken a course in French, and R the set of students who 
have taken a course in Russian. Then |S| = 1232, |F | = 879, |R| = 114, |S ∩ F | = 
103, |S ∩ R| = 23, |F ∩ R| = 14, and |S ∪ F ∪ R| = 2092. When we insert these
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quantities into the equation |S ∪F ∪R| = |S|+ |F |+ |R| − |S ∩F | − |S ∩R| − |F ∩
R|+ |S ∩ F ∩R| we obtain 2092 = 1232 + 879 + 114− 103− 23− 14 + |S ∩ F ∩R|.
We now solve for |S ∩ F ∩ R|. We find that |S ∩ F ∩ R| = 7. Therefore, there are

seven students who have taken courses in Spanish, French, and Russian.

Example 3.7. At your college, there are 20, 30, 25, and 43 students have taken 
languages Marathi, Hindi, English, Sanskrit respectively; there are 10 students who 
have taken Marathi and Hindi; 9 students who have taken Hindi and English; 13 
students who have taken Marathi and Sanskrit; 18 students who have taken Marathi 
and English; 25 students who have taken Hindi and Sanskrit; 17 students who have 
taken English and Sanskrit; 5 students who have taken Marathi, Hindi, English; 3 
students who have taken Marathi, Hindi, Sanskrit; 2 students who have taken Hindi, 
English, Sanskrit; 2 students who have taken Marathi, English, Sanskrit; 1 student 
who has taken all four languages. How many students are enrolled in languages 
either Marathi or Hindi or English or Sanskrit?
Solution: Let M be the set of students who have taken Marathi, H the set of 
students who have taken Hindi, E the set of students who have taken English, S 
the set of students who have taken Sanskrit. Then |M | = 20, |H| = 30, |E| = 
25, |S| = 43, |M ∩ H| = 10, |H ∩ E| = 9, |M ∩ S| = 13, |M ∩ E| = 18, |H ∩ S| = 
25, |E ∩ S| = 17, |M ∩ H ∩ E| = 5, |M ∩ H ∩ S| = 3, |M ∩ E ∩ S| = 2, |H ∩ E ∩ 
S| = 2, |M ∩ H ∩ E ∩ S| = 1. When we insert these quantities into the equation 
|M ∪H ∪E ∪S| = |M |+ |H|+ |E|+ |S|−|M ∩H|−|H ∩E|−|M ∩S|−|M ∩E|−|H ∩ 
S|−|E∩S|+|M ∩H ∩E|+|M ∩H ∩S|+|M ∩E∩S|+|H ∩E∩S|−|M ∩H ∩E∩S| = 
20 + 30 + 25 + 43− 10 − 9 − 13 − 18 − 25 − 17 + 5 + 3 + 2 + 2− 1 = 37 Therefore, 
there are 37 students who have taken atleast one language out of Marathi, Hindi, 
English, and Sanskrit.
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Exercises

1. How many elements are in A1 ∪ A2 if there are 12 elements in A1, 18 elements

in A2, and a) A1 ∩ A2 = φ? b) |A1 ∩ A2| = 1? c) |A1 ∩ A2| = 6? d) A1 ⊆ A2 ?

2. A survey of households in the United States reveals that 96 percent have at

least one television set, 98 percent have telephone service, and 95 percent have

telephone service and at least one television set. What percentage of households

in the United States have neither telephone service nor a television set?

3. Find the number of elements in A1 ∪A2 ∪A3 if there are 100 elements in each

set and if

a) the sets are pairwise disjoint.

b) there are 50 common elements in each pair of sets and no elements in all

three sets.

c) there are 50 common elements in each pair of sets and 25 elements in all

three sets.

d) the sets are equal.

4. There are 2504 computer science students at a college. Of these, 1876 have

taken a course in Java, 999 have taken a course in Linux, and 345 have taken

a course in C. Further, 876 have taken courses in both Java and Linux, 231

have taken courses in both Linux and C, and 290 have taken courses in both

Java and C. If 189 of these students have taken courses in Linux, Java, and C,

how many of these 2504 students have not taken a course in any of these three

programming languages?

5. How many students are enrolled in a course either in calculus, discrete math-

ematics, data structures, or programming languages at a college if there are

507, 292, 312, and 344 students in these courses, respectively; 14 in both calcu-

lus and data structures; 213 in both calculus and programming languages; 211

in both discrete mathematics and data structures; 43 in both discrete math-

ematics and programming languages; and no student may take calculus and

discrete mathematics, or data structures and programming languages, concur-

rently?

6. How many elements are in the union of four sets if the sets have 50, 60, 70, and
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80 elements, respectively, each pair of the sets has 5 elements in common, each

triple of the sets has 2 common elements, and 1 element is common in all four

sets?

7. In a survey of 270 college students, it is found that 64 like brussels sprouts, 94

like broccoli, 58 like cauliflower, 26 like both brussels sprouts and broccoli, 28

like both brussels sprouts and cauliflower, 22 like both broccoli and cauliflower,

and 14 like all three vegetables. How many of 270 students do not like any of

these vegetables?
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Introduction 

The origin of combinatorics goes far back in history. Magic squares (arrays where 

columns, rows and diagonals all sum to the same number) were popular subjects of 

mathematical study in medieval times. Jewish and Arab mathematicians in the early 

middle ages focused on combinatorial problems that counted the number of 

possibilities in a situation and evaluated their probability. This subject was studied 

in the seventeenth century, when combinatorial questions arose in the study of 

gambling games. Combinatorial approach to problem solving appears in the works 

of leading mathematicians such as Fibonacci, Pascal, Fermat and Euler. In modern 

times, the works of J. J. Sylvester (late 19th century) and Percy MacMahon (early 20th 

century) laid the foundation for enumerative and algebraic combinatorics. In the 

second half of 20th century, combinatorics enjoyed a rapid growth. The growth was 

spurred by new connections and applications to other fields, ranging from algebra 

to probability, from functional analysis to number theory, etc. These connections 

shed the boundaries between combinatorics and parts of mathematics and 

theoretical computer science, but at the same time led to a partial fragmentation of 

the field. 

Combinatorics is that part of mathematics which deals with counting and 

enumeration of specified objects, patterns or designs. Counting is also required to 

determine whether there are enough telephone numbers or Internet protocol 

addresses to meet demand. Recently, it has played a key role in mathematical 

biology, especially in sequencing DNA. 
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4.1 Product and Sum Rule 

Suppose that a password on a computer system consists of six, seven or eight 

characters. Each of these characters must be a digit or a letter of the alphabet. Each 

password must contain at least one digit. How many such passwords are there? 

The techniques needed to answer this question and a wide variety of other 

counting problems will be introduced in this section. Here we study two basic 

counting principles, the product rule and the sum rule. 

4.1.1 The Product Rule 

Product Rule : Suppose that a procedure can be broken down into a sequence of 

two tasks. If there are n1 ways to do the first task and for each of these ways of doing 

the first task, there are n2 ways to do the second task, then there are n1 × n2 ways to 

do the procedure. 

Note: The way to perform the second task does not depend on the way in which the 

first task is performed. 

Example 4.1. Chairs of an auditorium are to be labeled with an uppercase English 

letter followed by a positive integer not exceeding 100. What is the largest number 

of chairs that can be labeled differently? 

Solution: The procedure of labellings a chair consists of two tasks, namely, assigning 

to the seat one of the 26 uppercase English letters, and then assigning to it one of the 

100 possible integers. The product rule shows that there are 26×100 = 2600 

different ways that a chair can be labeled. Therefore, the largest number of chairs 

that can be labeled differently is 2600. 

Example 4.2. There are 32 microcomputers in a computer center. Each 

microcomputer has 24 ports. How many different ports to a microcomputer in the 

center are there? 

Solution: The procedure of choosing a port consists of two tasks, first picking a 

microcomputer and then picking a port on this microcomputer. Because there are 

32 ways to choose the microcomputer and 24 ways to choose the port no matter 

which microcomputer has been selected, the product rule shows that there are 32 × 

24 = 768 ports. 

Example 4.3. A new company with just two employees, Anil and Neel, rents a floor 

of a building with 12 offices. How many ways are there to assign different offices to 

these two employees? 
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Solution: The procedure of assigning offices to these two employees consists of 

assigning an office to Anil, which can be done in 12 ways, then assigning an office to 

Neel different from the office assigned to Anil and which can be done in 11 ways. By 

the product rule, there are 12 × 11 = 132 ways to assign offices to these two 

employees. 

An extended version of the product rule is often useful. 

Generalized Product Rule : Suppose that a procedure is carried out by performing 

the tasks T1,T2,...,Tm in sequence. If each task Ti, i = 1,2,...,m, can be done in ni ways, 

regardless of how the previous tasks were done, then there are n1 × n2 × ··· × nm ways 

to carry out the procedure. 

Example 4.4. A certain type of car can be purchased in any of five colors, with a 

manual or automatic transmission, and with any of three engine sizes. How many 

different car packages are available? 

Solution: We can select colour in 5 ways, we can select transmission type in 2 ways, 

we can select engine type in 3 ways. Therefore by generalized product rule there are 

5 × 2 × 3 = 30 car packages available. 

Example 4.5. Let L be the set of Washington state license plates, three numbers 

followed by three capital letters. How many license plates are in the set? 

Solution: Each letter on license plate can be selected in 26 ways, each digit on license 

plate can be selected in 10 ways. Therefore by multiplication principle there are 26 

× 26 × 26 × 10 × 10 × 10 = 17,576,000 Washington state license plates. 

Example 4.6. In the above example if letters and digits on license plate can not be 

repeated, then find the number of possible license plates. 

Solution: First letter on license plate can be selected in 26 ways. Since there is no 

repetition, second letter on license plate can be selected in 25 ways, third letter on 

license plate can be selected in 24 ways. First digit on license plate can be selected 

in 10 ways, second digit on license plate can be selected in 9 ways, third digit on 

license plate can be selected in 8 ways. Therefore by multiplication principle there 

are 26 × 25 × 24 × 10 × 9 × 8 = 11,232,000 required license plates. 
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Example 4.7. How many different 4-letter radio station call letters (upper case) can 

be made 

a) if the first letter must be a K or W and no letter may be repeated? 

b) if repeats are allowed (but the first letter is a K or W). 

c) How many of the 4-letter call letters (starting with K or W) with no repeats endin 

R? 

Solution: a) Since first letter is K or W, there are 2 ways to select first letter. Since 

there is no repetition, there are 25 ways to select second letter, 24 ways to select 

third letter, 23 ways to select fourth letter. By multiplication principle, there are 2 × 

25 × 24 × 23 = 27,600 radio station call letters. 

b) Since first letter is K or W, there are 2 ways to select first letter. Since rep-

etition is allowed, there are 26 ways to select second letter, 26 ways to select third 

letter, 26 ways to select fourth letter. By multiplication principle, there are 2 × 26 × 

26 × 26 = 35,152 radio station call letters. 

2 × 24 × 23 × 1 

c) The last place can be filled in 1 way(with R). Since the first letter is K or W, 

thereare 2 ways to select first letter. Since repetition is not allowed, there are 24 

ways to select the second letter and 23 ways to select the third letter. By 

multiplication principle, there are 2 × 24 × 23 × 1 radio station call letters that can 

be made. 

Example 4.8. How many different bit (each bit is either 0 or 1) strings of length 

seven are there? 

Solution: Each of the seven bits can be chosen in two ways, because each bit is either 

0 or 1. Therefore, the product rule shows there are a total of 27 = 128 different bit 

strings of length seven. 

Theorem 4.1. (Counting Functions) The number of functions from a set with r 

elements to a set with n elements is nr. 

Proof. A function corresponds to a choice of one of the n elements in the codomain 

for each of the r elements in the domain. Hence, by the product rule there are 

 functions from a set with r elements to one with n elements. 
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Theorem 4.2. (Counting One-to-One Functions) The number of one-to-one 

functions from a set with r elements to a set with n elements is n × (n − 1) × (n − 2) × ... 

× (n − r + 1) 

Proof. First note that when r > n there are no one-to-one functions from a set with r 

elements to a set with n elements. 

Now let r ≤ n. Suppose the elements in the domain are a1,a2,...,ar. There are n ways to 

choose the value of the function at a1. Because the function is one-to-one, the value 

of the function at a2 can be chosen in n−1 ways (because the value used for a1 cannot 

be used again). In general, the value of the function at ak can be chosen in n−(k−1) 

ways. By the product rule, there are n×(n−1)×(n−2)×...×(n−r+1) one-to-one functions 

from a set with r elements to one with n elements.  

Theorem 4.3. (Counting Subsets of a Finite Set) The number of different subsets of 

a finite set X with n elements is 2n. 

Proof. Let X = {a1,a2,...,an} be a finite set. For any subset A of X we define bit-string SA 

= b1b2...bn, where bi = 0 if ai ∈/ A and bi = 1 if ai ∈ A. define function φ from power set 

of X to set of all bit strings of length n as below. 

φ(A) = SA for all A ⊆ X. Note that φ is one-one and onto function. Therefore number 

of subsets of X is number of bit strings of length n. By the product rule, there are 2n 

bit strings of length n. Hence total number of subsets of X = 2n.  

Note: The product rule is often phrased in terms of sets in the following way. 

If A1,A2,...,Am are finite sets, then the number of elements in the Cartesian product of 

these sets is the product of the number of elements in each set. To relate this to the 

product rule, note that the task of choosing an element in the Cartesian product A1 × 

A2 × ... × Am is done by choosing an element in A1, an element in A2,..., and an element 

in Am. By the product rule it follows that |A1 × A2 × ... × Am| = |A1| × |A2| × ... × |Am|. 
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4.1.2 The Sum Rule 

The Sum Rule : If a task can be done either in one of n1 ways or in one of n2 ways, 

where none of the set of n1 ways is the same as any of the set of n2 ways, then there 

are n1 + n2 ways to do the task. 

Example 4.9. Suppose there are 5 different types of burgers and 8 different types of 

pizzas. How many selections does a customer have ? 

Solution: There are 5 choices for the burgers and 8 choices for the pizzas. We have 

to select one burger or one pizza. By addition principle there are 5+8 = 13 possible 

selections. 

We can extend the sum rule to more than two tasks. 

Generalized Sum Rule : 

Suppose that a task can be done in one of n1 ways, in one of n2 ways,..., or in one of nm 

ways, where none of the set of ni ways of doing the task is the same as any of the set 

of nj ways, for all pairs i and j with 1 ≤ i < j ≤ m. Then the number of ways to do the 

task is n1 + n2 + ... + nm. 

Example 4.10. Suppose that either a member of the mathematics faculty or a student 

who is a mathematics major is chosen as a representative to a university committee. 

How many different choices are there for this representative if there are 37 members 

of the mathematics faculty and 83 mathematics majors and no one is both a faculty 

member and a student? 

Solution: There are 37 ways to choose a member of the mathematics faculty and 

there are 83 ways to choose a student who is a mathematics major. Choosing a 

member of mathematics faculty is never same as choosing a student who is a 

mathematics major because no one is both a faculty member and a student. By the 

sum rule it follows that there are 37 + 83 = 120 possible ways to pick this 

representative. 

Example 4.11. A student can choose a project from one of three lists. The three lists 

contain 23, 15, and 19 possible projects, respectively. No project is in more than one 

list. How many possible projects are there to choose from? 

Solution: The student can choose a project by selecting a project from the first list, 

the second list, or the third list. Because no project is in more than one list, by the 

sum rule there are 23 + 15 + 19 = 57 ways to choose a project. 
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Example 4.12. Each user on a computer system has a password, which is six to eight 

characters long, where each character is an uppercase letter or a digit. Each 

password must contain at least one digit. How many possible passwords are there? 

Solution: Let P be the total number of possible passwords, and let P6,P7, and P8 

denote the number of possible passwords of length 6,7, and 8, respectively. By the 

sum rule, P = P6 + P7 + P8. We will now find P6, P7, and P8. Finding P6 directly is difficult. 

To find P6 it is easier to find the number of strings of uppercase letters and digits that 

are six characters long, including those with no digits, and subtract from this the 

number of strings with no digits. By the product rule, the number of strings of six 

characters is 366, and the number of strings with no digits is 266. Hence, 

P6 = 366 − 266 = 2,176,782,336 − 308,915,776 = 1,867,866,560. Similarly, we have P7 

= 367 − 267 = 78,364,164,096 − 8,031,810,176 = 70,332,353,920 and 

P8 = 368 8 ,576 = 

2,612,282,842, 880. 

Consequently, 

4.2 The Division Rule 

We have introduced the product and sum rules for counting. You may wonder 

whether there is also a division rule for counting. In fact, there is such a rule, which 

can be useful when solving certain types of enumeration problems. 

The Division Rule : There are  ways to do a task if it can be done using a procedure 

that can be carried out in n ways, and for every way w, exactly d of the n ways 

correspond to way w. 

We can restate the division rule in terms of sets: If the finite set A is the union of n 

pairwise disjoint subsets each with d elements, then n = | |. 

A 

d 

We can also formulate the division rule in terms of functions: If f is a function from 

A to B where A and B are finite sets, and that for every value y ∈ B there are exactly 
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d values x ∈ A such that f(x) = y (in which case, we say that f is d -to-one), then

. 

Example 4.13. How many different ways are there to seat four people around a 

circular table, where two seatings are considered the same when each person has 

the same left neighbor and the same right neighbor? 

Solution: We arbitrarily select a seat at the table and label it seat 1. We number the 

rest of the seats in numerical order, proceeding clockwise around the table. Note that 

there are four ways to select the person for seat 1, three ways to select the person 

for seat 2, two ways to select the person for seat 3, and one way to select the person 

for seat 4. Thus, there are 4! = 24 ways to order the given four people for these seats. 

However, each of the four choices for seat 1 leads to the same arrangement, as we 

distinguish two arrangements only when one of the people has a different immediate 

left or immediate right neighbor. Because there are four ways to choose the person 

for seat 1, by the division rule there are  = 6 different seating arrangements of four 

people around the circular table. 

Exercises 

1. There are 18 mathematics majors and 325 computer science majors at a 

college. 

a) In how many ways can two representatives be picked so that one is a math-

ematics major and the other is a computer science major? 

b) In how many ways can one representative be picked who is either a mathe-

matics major or a computer science major? 

2. A multiple-choice test contains 10 questions. There are four possible 

answersfor each question. 

a) In how many ways can a student answer the questions on the test if 

thestudent answers every question? 

b) In how many ways can a student answer the questions on the test if 

thestudent can leave answers blank? 

3. Six different airlines fly from Chennai to Mumbai and seven fly from Mumbaito 

Delhi. How many different pairs of airlines can you choose on which to book a 

trip from Chennai to Delhi via Mumbai, when you pick an airline for the flight 

to Mumbai and an airline for the continuation flight to Delhi? 
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4. How many different three capital letter initials can people have? 

5. How many different three capital letter initials are there that begin with an A? 

6. How many bit strings with length not exceeding n, where n is a positive integer, 

consist entirely of 1s, not counting the empty string? 

7. How many strings of five ASCII characters contain the character ‘a’ at least 

once? [Note: There are 128 different ASCII characters.] 

8. How many 6-element RNA sequences(A,C,G,U sequences) 

a) do not contain U? 

b) end with GU? 

c) start with C? 

d) contain only A or U? 

9. How many positive integers between 100 and 999 inclusive 

a) are divisible by 7? 

b) are odd? 

c) have the same three decimal digits? 

d) are not divisible by 4? 

10. How many strings of three decimal digits 

a) do not contain the same digit three times? 

b) begin with an odd digit? 

c) have exactly two digits that are 4s? 

11. A committee is formed consisting of one representative from each of the 50 

states in the United States, where the representative from a state is either the 

governor or one of the two senators from that state. How many ways are there 

to form this committee? 

12. How many license plates can be made using either two uppercase English 

lettersfollowed by four digits or two digits followed by four uppercase English 

letters? 

13. How many license plates can be made using either two or three 

uppercaseEnglish letters followed by either two or three digits? 

14. How many strings of eight capital English letters are there 
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Sets (1/24)

A set is an unordered collection of objects.

The objects in a set are called the elements, or 

members, of the set. A set is said to contain its 

elements.

Lec_6
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Sets (2/24)

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}

We write 𝑎 ∈ 𝑆 to denote that 𝑎 is an element of 

the set 𝑆. The notation 𝑒 ∉ 𝑆 denotes that 𝑒 is not 

an element of the set 𝑆. 

Discrete Structures
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Sets (3/24)

The set 𝑂 of odd positive integers less than 10 

can be expressed by 𝑂 = {1, 3, 5, 7, 9}. 

The set of positive integers less than 100 can be 

denoted by {1, 2, 3, … , 99}. 

ellipses (…)

Discrete Structures
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Sets (4/24)

Another way to describe a set is to use set 

builder notation.

The set 𝑂 of odd positive integers less than 10 

can be expressed by 𝑂 = {1, 3, 5, 7, 9}. 

Discrete Structures
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Sets (5/24)
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Sets (6/24)

Interval Notation

Closed interval   [𝑎, 𝑏]
Open interval     (𝑎, 𝑏)

[𝑎, 𝑏] = {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏}

[𝑎, 𝑏) = {𝑥 | 𝑎 ≤ 𝑥 < 𝑏}

(𝑎, 𝑏] = {𝑥 | 𝑎 < 𝑥 ≤ 𝑏}

(𝑎, 𝑏) = {𝑥 | 𝑎 < 𝑥 < 𝑏}

Discrete Structures
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Sets (7/24)

If 𝐴 and 𝐵 are sets, then 𝐴 and 𝐵 are equal if and only if 

∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵). We write 𝐴 = 𝐵, if 𝐴 and 𝐵 are 

equal sets.

• The sets {1, 3 , 5} and {3, 5 , 1} are equal, because

they have the same elements.

• {1 , 3 , 3 , 5 , 5 , 5} is the same as the set

{1, 3 , 5} because they have the same elements.

Discrete Structures
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Sets (8/24)

Empty Set

There is a special set that has no elements. This set is 

called the empty set, or null set, and is denoted by ∅.

The empty set can also be denoted by { }

Discrete Structures
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Sets (9/24)

Cardinality

The cardinality is the number of distinct elements in 𝑆.

The cardinality of 𝑆 is denoted by 𝑆 .

Discrete Structures
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Sets (10/24)

Example1

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}
𝑆 = 4

𝐴 = {1, 2, 3, 7, 9}

∅ =

Discrete Structures
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Sets (10/24)

Example1

𝑆 = {𝑎, 𝑏, 𝑐, 𝑑}
𝑆 = 4

𝐴 = {1, 2, 3, 7, 9}
𝐴 = 5

∅ =
|∅| = 0

Discrete Structures
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Sets (11/24)

Example2

𝑆 = 𝑎, 𝑏, 𝑐, 𝑑, 2

𝑆 =

𝐴 = {1, 2, 3, {2,3}, 9}
𝐴 =

{∅} = { }
∅ =

Discrete Structures
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Sets (11/24)

Example2

𝑆 = 𝑎, 𝑏, 𝑐, 𝑑, 2

𝑆 = 5

𝐴 = {1, 2, 3, {2,3}, 9}
𝐴 = 5

{∅} = { }
∅ = 1

Discrete Structures



16

Sets (12/24)

Infinite 

A set is said to be infinite if it is not finite.

The set of positive integers is infinite.

𝑍+ = {1,2,3, … }

Discrete Structures
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Sets (13/24)

Subset 

The set 𝐴 is said to be a subset of 𝐵 if and only if
every element of 𝐴 is also an element of 𝐵 .

We use the notation 𝐴 ⊆ 𝐵 to indicate that
𝐴 is a subset of the se𝑡 𝐵 .

𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)

Discrete Structures
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Sets (13/24)

Subset 

The set 𝐴 is said to be a subset of 𝐵 if and only if
every element of 𝐴 is also an element of 𝐵 .

We use the notation 𝐴 ⊆ 𝐵 to indicate that
𝐴 is a subset of the se𝑡 𝐵 .

𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)

(𝑨 ⊆ 𝑩) ≡ (𝑩 ⊇ 𝑨)

Discrete Structures
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Sets (13/24)

Subset 

To show that two sets A and B are equal, show that 
𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴.

Discrete Structures
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Sets (14/24)

Proper Subset 

The set 𝐴 is a subset of the set 𝐵 but that 𝐴 ≠ 𝐵,
we write 𝐴 ⊂ 𝐵
and say that 𝐴 is a 𝐩𝐫𝐨𝐩𝐞𝐫 𝐬𝐮𝐛𝐬𝐞𝐭 of 𝐵.

𝐴 ⊂ 𝐵 ↔ ∀𝑥 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ 𝑥 ∉ 𝐴

Discrete Structures
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Sets (15/24)

Example

For each of the following sets,
determine whether 3 is an element of that set.

1,2,3,4

1 , 2 , 3 , 4

1,2, 1,3

Discrete Structures
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Sets (16/24)

Venn Diagram

𝐴 = 1,2,3,4,7
𝐵 = 0,3,5,7,9
𝐶 = 1,2

Discrete Structures
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Sets (17/24)

Venn Diagram

𝐴 = 1,2,3,4,7
𝐵 = 0,3,5,7,9
𝐶 = 1,2 1, 2

4

3, 7 0, 5, 9

Universal Set

Discrete Structures
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Sets (18/24)

Power Set

𝐓𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐚𝐥𝐥 𝐬𝐮𝐛𝐬𝐞𝐭𝐬.

If the set is 𝑆. The power set of 𝑆 is denoted by 𝑃(𝑆).

The number of elements in the power set is 2 𝑆
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Sets (18/24)

Power Set

𝐓𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐚𝐥𝐥 𝐬𝐮𝐛𝐬𝐞𝐭𝐬.

If the set is 𝑆. The power set of 𝑆 is denoted by 𝑃(𝑆).

The number of elements in the power set is 2 𝑆

𝑆 = 1,2,3

𝑃 𝑆 = 2𝑆

= ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , 1,2,3

𝑷 𝑺 = 𝟐𝟑 = 𝟖 𝐞𝐥𝐞𝐦𝐞𝐧𝐭𝐬

Discrete Structures



26

Sets (19/24)

Example1

Discrete Structures
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Sets (19/24)

Example1

Discrete Structures
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Sets (20/24)

Example2

Discrete Structures
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Sets (20/24)

Example2

Discrete Structures
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Sets (21/24)

The ordered 𝒏-tuple

The ordered 𝑛-tuple (𝑎1, 𝑎2, … , 𝑎𝑛) is the ordered 

collection that has 𝑎1 as its first element, 𝑎2 as its 

second element, … , and 𝑎𝑛 as its 𝑛th element.

In particular, ordered 2-tuples are called ordered 

pairs (e.g., the ordered pairs (𝑎, 𝑏))

Discrete Structures
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Sets (22/24)

Cartesian Products

Let 𝐴 and 𝐵 be sets. 

The Cartesian product of 𝐴 and 𝐵, denoted by 𝐴 × 𝐵, 

is the set of all ordered pairs (𝑎, 𝑏), where 𝑎 ∈ 𝐴 and 

𝑏 ∈ 𝐵 . Hence, 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}.

Discrete Structures



32

Sets (22/24)

Cartesian Products - Example

Let 𝐴 = 1,2 , and 𝐵 = 𝑎, 𝑏, 𝑐

𝐴 × 𝐵 = 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐 .

𝐴 × 𝐵 = 𝐴 ∗ 𝐵 = 2 ∗ 3 = 6

Discrete Structures
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Sets (22/24)

Cartesian Products - Example

Let 𝐴 = 1,2 , and 𝐵 = 𝑎, 𝑏, 𝑐

𝐴 × 𝐵 = 1, 𝑎 , 1, 𝑏 , 1, 𝑐 , 2, 𝑎 , 2, 𝑏 , 2, 𝑐 .

𝐴 × 𝐵 = 𝐴 ∗ 𝐵 = 2 ∗ 3 = 6

Find 𝐵 × 𝐴 ?

Discrete Structures



34

Sets (23/24)

The Cartesian product of more than two sets.

The Cartesian product of the sets 𝐴1, 𝐴2, … , 𝐴𝑛 , 

denoted by 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛, is the set of ordered 

𝑛-tuples (𝑎1, 𝑎2, … , 𝑎𝑛), where 𝑎𝑖 belongs to 𝐴𝑖 for 

𝑖 = 1, 2, … , 𝑛. In other words, 

𝐴1 × 𝐴2 × ⋯ × 𝐴𝑛 =

𝑎1, 𝑎2, … , 𝑎𝑛 𝑎𝑖 ∈ 𝐴𝑖 for 𝑖 = 1, 2, … , 𝑛 .

Discrete Structures
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Sets (24/24)

Example:

Discrete Structures
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Set Operations (1/7)

Union

Let 𝐴 and 𝐵 be sets. The union of the sets A and B , 

denoted by 𝐴 ∪ 𝐵, is the set that contains those 

elements that are either in 𝐴 or in 𝐵 , or in both.

Discrete Structures
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Set Operations (1/7)

Union

Let 𝐴 and 𝐵 be sets. The union of the sets A and B , 

denoted by 𝐴 ∪ 𝐵, is the set that contains those 

elements that are either in 𝐴 or in 𝐵 , or in both.

Discrete Structures
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Set Operations (1/7)

Union

Let 𝐴 and 𝐵 be sets. The union of the sets A and B , 

denoted by 𝐴 ∪ 𝐵, is the set that contains those 

elements that are either in 𝐴 or in 𝐵 , or in both.

The union of the sets {1, 3, 5} and {1, 2, 3}

is the set {1, 2, 3, 5}

Discrete Structures
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Set Operations (2/7)

Intersection

Let 𝐴 and 𝐵 be sets. The intersection of the sets A and 

B , denoted by 𝐴 ∩ 𝐵, is the set that contains those 

elements that are in both 𝐴 and 𝐵.

Discrete Structures



40

Set Operations (2/7)

Intersection

Let 𝐴 and 𝐵 be sets. The intersection of the sets A and 

B , denoted by 𝐴 ∩ 𝐵, is the set that contains those 

elements that are in both 𝐴 and 𝐵.

Discrete Structures
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Set Operations (2/7)

Intersection

Let 𝐴 and 𝐵 be sets. The intersection of the sets A and 

B , denoted by 𝐴 ∩ 𝐵, is the set that contains those 

elements that are in both 𝐴 and 𝐵.

The intersection of the sets {1, 3, 5} and {1, 2, 3}

is the set {1, 3}

Discrete Structures
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Set Operations (3/7)

Disjoint

Two sets are called disjoint if their intersection is the 

empty set.

𝐴 ∩ 𝐵 = ∅
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Set Operations (4/7)

Difference

Let 𝐴 and 𝐵 be sets. The difference of 𝐴 and 𝐵 , 

denoted by 𝐴 − 𝐵 , is the set containing those

elements that are in 𝐴 but not in 𝐵. 
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Set Operations (4/7)

Difference

Let 𝐴 and 𝐵 be sets. The difference of 𝐴 and 𝐵 , 

denoted by 𝐴 − 𝐵 , is the set containing those

elements that are in 𝐴 but not in 𝐵. 

𝐴 = 1,3,5 , 𝐵 = 1,2,3

𝐴 − 𝐵 = 5

Discrete Structures
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Set Operations (4/7)

Difference

Discrete Structures
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Set Operations (5/7)

Complement

Let 𝑈 be the universal set.

The complement of the set 𝐴 , denoted by ҧ𝐴

An element 𝑥 belongs to 𝑈 if and only if 𝑥 ∉ 𝐴.

Discrete Structures
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Set Operations (5/7)

Complement

Let 𝑈 be the universal set.

The complement of the set 𝐴 , denoted by ҧ𝐴

An element 𝑥 belongs to 𝑈 if and only if 𝑥 ∉ 𝐴.

𝑈 = 1,2,3,4,5 , 𝐴 = 1,3

ҧ𝐴 = 2,4,5

Discrete Structures
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Set Operations (5/7)

Complement

Discrete Structures
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Set Operations (6/7)

Generalized Unions

Discrete Structures
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Set Operations (6/7)

Generalized Unions

Discrete Structures
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Set Operations (7/7)

Generalized Intersections

Discrete Structures
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Set Operations (7/7)

Generalized Intersections
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Set Identities (1/8)

Discrete Structures
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Set Identities (2/8)

Discrete Structures
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Set Identities (3/8)

Example1

Discrete StructuresDiscrete Structures
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Set Identities (4/8)

Example1 – Answer 

Discrete StructuresDiscrete Structures
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Set Identities (5/8)

Discrete Structures
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Set Identities (6/8)

Discrete Structures
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Set Identities (7/8)

Example2

Discrete Structures
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Set Identities (8/8)

Example2 – Answer 
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Functions (1/21)

Function

Let 𝐴 and 𝐵 be nonempty sets. A function 𝑓 from 𝐴 to 
𝐵 is an assignment of exactly one element of 𝐵 to 
each element of 𝐴. 

We write 𝑓(𝑎) = 𝑏 if 𝑏 is the unique element of 𝐵
assigned by the function 𝑓 to the element 𝑎 of 𝐴. 

If 𝑓 is a function from 𝐴 to 𝐵, we write 𝑓: 𝐴 → 𝐵. 

Lec_7
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Functions (2/21)

Function
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Functions (3/21)

The Function 𝒇: 𝑨 → 𝑩
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Functions (3/21)

The Function 𝒇: 𝑨 → 𝑩

Domain: 𝐴

Co-Domain: 𝐵

𝑓 𝑎 = 𝑏

𝑏 is the image of 𝑎
𝑎 is a preimage of 𝑏

The range, or image, of 𝑓
is the set of all images of 

elements of 𝐴.
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Functions (4/21)

The Function 𝒇: 𝑨 → 𝑩

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4
5
6
7

𝑨 → 𝑩

Domain = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒

Co-Domain = 1,2,3,4,5,6,7

Range = {1,3,4,5,7}
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Functions (5/21)

Definition

Let 𝑓1 and 𝑓2 be functions from 𝐴 to R. Then 𝑓1 + 𝑓2 and 𝑓1 𝑓2 are also

functions from 𝐴 to R defined for all 𝑥 ∈ 𝐴 by

𝑓1 + 𝑓2 (𝑥) = 𝑓1(𝑥) + 𝑓2(𝑥),

(𝑓1𝑓2)(𝑥) = 𝑓1 𝑥 𝑓2(𝑥).
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Functions (6/21)

Example

Let 𝑓1 and 𝑓2 be functions from R to R such that 𝑓1(𝑥) = 𝑥2 and

𝑓2(𝑥) = 𝑥 − 𝑥2. What are the functions 𝑓1 + 𝑓2 and 𝑓1𝑓2 ?

𝑓1 + 𝑓2 𝑥 = 𝑓1 𝑥 + 𝑓2 𝑥 = 𝑥2 + 𝑥 − 𝑥2 = 𝑥,

𝑓1𝑓2 𝑥 = 𝑓1 𝑥 𝑓2 𝑥 = 𝑥2 𝑥 − 𝑥2 = 𝑥3 − 𝑥4.
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Functions (7/21)

Definition

Let 𝑓 be a function from 𝐴 to 𝐵 and let 𝑆 be a subset of 𝐴. 

The image of 𝑆 under the function 𝑓 is the subset of 𝐵 that consists of 

the images of the elements of 𝑆. 

We denote the image of 𝑆 by 𝑓(𝑆), so

𝑓 𝑆 = 𝑡 ∃𝑠 ∈ 𝑆 𝑡 = 𝑓 𝑠 .

or shortly {𝑓 𝑠 | 𝑠 ∈ 𝑆}.
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Functions (8/21)

Example

Let 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝐵 = {1, 2, 3, 4} with 𝑓(𝑎) = 2, 𝑓(𝑏) = 1, 

𝑓(𝑐) = 4, 𝑓(𝑑) = 1, and 𝑓(𝑒) = 1.

𝑆 = 𝑏, 𝑐, 𝑑 ⊆ 𝐴

The image of the subset 𝑆 = {𝑏, 𝑐, 𝑑} is the set 𝑓(𝑆) = {1, 4}
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Functions (9/21)

One-to-One function (injective)

A function f is said to be one-to-one, or injective, 

if and only if f(a) = f(b) implies that a = b for all a and b in the domain 

of f. 
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Functions (9/21)

One-to-One function (injective)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4
5
6
7

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 3

𝑓 𝑐 = 7

𝑓 𝑑 = 4

𝑓 𝑒 = 5
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Functions (9/21)

NOT One-to-One function (Not injective)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4
5
6
7

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 1

𝑓 𝑐 = 7

𝑓 𝑑 = 4

𝑓 𝑒 = 5
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Functions (10/21)

onto function (surjective)

A function f from A to B is called onto, or surjective, if and only if for 

every element b ∈ B there is an element a ∈ A with f(a) = b. 

Co-Domain  = Range
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Functions (10/21)

onto function (surjective)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 1

𝑓 𝑐 = 4

𝑓 𝑑 = 2

𝑓 𝑒 = 3
Co-Domain = 1,2,3,4

Range = {1,2,3,4}
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Functions (10/21)

NOT onto function (Not surjective)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 1

𝑓 𝑐 = 4

𝑓 𝑑 = 1

𝑓 𝑒 = 3
Co-Domain = 1,2,3,4

Range = {1,3,4}
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Functions (11/21)

One-to-one correspondence (bijection)

The function f is a one-to-one correspondence, or a bijection, if it is 

both one-to-one and onto.
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Functions (11/21)

One-to-one correspondence (bijection)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4
5

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 3

𝑓 𝑐 = 5

𝑓 𝑑 = 2

𝑓 𝑒 = 4
Co-Domain = 1,2,3,4,5

Range = {1,2,3,4,5}

|A| = |B|
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Functions (11/21)

NOT One-to-one correspondence (Not bijection)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4
5

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 3

𝑓 𝑐 = 5

𝑓 𝑑 = 1

𝑓 𝑒 = 4
Co-Domain = 1,2,3,4,5

Range = {1,3,4,5}

NOT one-to-one

NOT onto
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Functions (11/21)

NOT One-to-one correspondence (Not bijection)

𝑎
𝑏
𝑐
𝑑
𝑒

1
2
3
4

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 2

𝑓 𝑐 = 3

𝑓 𝑑 = 1

𝑓 𝑒 = 4
Co-Domain = 1,2,3,4

Range = {1,2,3,4}

Onto 

NOT one-to-one

Discrete Structures
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Functions (11/21)

NOT One-to-one correspondence (Not bijection)

𝑎
𝑏
𝑐
𝑑

1
2
3
4
5

𝑨 → 𝑩

𝑓 𝑎 = 1

𝑓 𝑏 = 3

𝑓 𝑐 = 5

𝑓 𝑑 = 2

Co-Domain = 1,2,3,4,5

Range = {1,2,3,5}

One-to-one

NOT onto

Discrete Structures
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Functions (12/21)

Examples

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

One-to-one

NOT onto

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

NOT One-to-one

Onto

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

One-to-one

Onto

∴ bijection

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

NOT One-to-one

NOT Onto

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

𝑨 𝑩→

Discrete Structures
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Functions (12/21)

Examples

NOT a function 

from 𝑨 to 𝑩

𝑨 𝑩→

Discrete Structures
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Functions (13/21)

Examples

Determine whether the function 𝑓 𝑥 = 𝑥 + 1 from the set of integers 

to the set of integers is one-to-one.

Discrete Structures
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Functions (13/21)

Examples (Answer)

Determine whether the function 𝑓 𝑥 = 𝑥 + 1 from the set of integers 

to the set of integers is one-to-one.

𝑓 𝑎 = 𝑎 + 1 and 𝑓 𝑏 = 𝑏 + 1

𝑓 𝑥 is one−to−one (if 𝑓 𝑎 = 𝑓 𝑏 and a equal b then).

𝑎 + 1 = 𝑏 + 1

𝑎 = 𝑏

∴ 𝑓 𝑥 is one−to−one

Discrete Structures
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Functions (14/21)

Examples

Determine whether the function 𝑓(𝑥) = 𝑥2 from the set of integers to

the set of integers is one-to-one.

Discrete Structures
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Functions (14/21)

Examples (Answer)

Determine whether the function 𝑓(𝑥) = 𝑥2 from the set of integers to

the set of integers is one-to-one.

𝑓 𝑎 = 𝑎2 and 𝑓 𝑏 = 𝑏2

𝑓 𝑥 is one−to−one (if 𝑓 𝑎 = 𝑓 𝑏 and a equal b then).

𝑎2 = 𝑏2

±𝑎 = ±𝑏

𝑎 may be not equal 𝑏

∴ 𝑓 𝑥 is NOT one−to−one

Discrete StructuresDiscrete Structures
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Functions (15/21)

Inverse Functions

Let f  be a one-to-one correspondence from the set A to the set B. The 

inverse function of f is the function that assigns to an element b

belonging to B the unique element a in A such that 𝑓(𝑎) = 𝑏. The 

inverse function of f is denoted by 𝒇−𝟏. Hence, 𝑓−1 𝑏 = 𝑎 when

𝑓(𝑎) = 𝑏.

Discrete Structures
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Functions (15/21)

Inverse Functions

Discrete Structures
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Functions (16/21)

Invertible

A one-to-one correspondence is called invertible because we can 

define an inverse of this function. A function is not invertible if it is 

not a one-to-one correspondence, because the inverse of such a 

function does not exist.

Discrete Structures
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Functions (17/21)

Invertible – Example

Let f be the function from 𝑎, 𝑏, 𝑐 to { 1 , 2, 3} such that 𝑓(𝑎) = 2, 

𝑓(𝑏) = 3, and 𝑓(𝑐) = 1. Is 𝑓 invertible, and if it is, what is its 

inverse?

Discrete Structures
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Functions (17/21)

Invertible – Example

Let f be the function from 𝑎, 𝑏, 𝑐 to {1, 2, 3} such that 𝑓(𝑎) = 2, 

𝑓(𝑏) = 3, and 𝑓(𝑐) = 1. Is 𝑓 invertible, and if it is, what is its 

inverse?

Answer:

The function 𝑓 is invertible because it is a one-to-one correspondence. 

The inverse function 𝑓−1 reverses the correspondence given by 𝑓, so

𝑓−1(1) = 𝑐,  𝑓−1(2) = 𝑎, and  𝑓−1(3) = 𝑏.

Discrete Structures
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Functions (21/21)

The Graphs of Functions

Let 𝑓 be a function from 𝐴 to 

𝐵. The graph of the function 

𝑓 is the set of ordered pairs 

{(𝑎, 𝑏)| 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵}.

Discrete Structures
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Some Important Functions (1/4)

Floor function 𝒚 = 𝒙

Discrete Structures
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Some Important Functions (2/4)

Ceiling function 𝒚 = 𝒙

Discrete Structures
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Some Important Functions (3/4)

Useful Properties

Discrete Structures
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Some Important Functions (4/4)

Examples

0.5 =

0.5 =

3 =

−0.5 =

−1.2 =

1.1 =

0.3 + 2 =

1.1 + 0.5 =

Discrete Structures
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Some Important Functions (4/4)

Examples-Answer

0.5 = 0

0.5 = 1

3 = 3

−0.5 = − 0.5 = −1

−1.2 = −1

1.1 = 1

0.3 + 2 = 2

1.1 + 0.5 = 3

Discrete Structures
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Definition:
A graph 𝐺 = (𝑉, 𝐸) consists of 𝑉, a nonempty set of vertices
(or nodes) and 𝐸, a set of edges. Each edge has either one or

two vertices associated with it, called its endpoints. An edge

is said to connect its endpoints.

BS102 Discrete Mathematics

vertex edge

A Computer Network
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Remark:
The set of vertices 𝑉 of a graph 𝐺 may be infinite. A graph 

with an infinite vertex set or an infinite number of edges is 

called an infinite graph, and in comparison, a graph with a

finite vertex set and a finite edge set is called a finite graph.

In this chapter, we will usually consider only finite graphs.

BS102 Discrete Mathematics

vertex edge

A Computer Network
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Simple Graph:
Note that each edge of the graph representing this computer 

network connects two different vertices. A graph in which 

each edge connects two different vertices and where no two 

edges connect the same pair of vertices is called a simple 

graph.

BS102 Discrete Mathematics

vertex edge

A Computer Network

Graph Terminology
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Multigraphs:
Graphs that may have multiple edges connecting the same 

vertices are called multigraphs.

BS102 Discrete Mathematics

multiple edges

A Computer Network 
with Multiple Links 

Graph Terminology
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Loop:
Edges that connect a vertex to itself are called loops. 

BS102 Discrete Mathematics

loop

A Computer Network 
with Loops

Graph Terminology
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Pseudographs:
Graphs that may include loops, and possibly multiple edges 

connecting the same pair of vertices or a vertex to itself, are 

sometimes called pseudographs.

BS102 Discrete Mathematics

loop

A Computer Network 
with Loops

Graph Terminology
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Undirected Graphs:

BS102 Discrete Mathematics

Undirected edges

Basic Types of Graphs
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directed edge

A Computer Network 
with One-way 

Communications Links

Basic Types of Graphs
Directed Graphs:
A directed graph (or digraph) (𝑉, 𝐸) consists of a nonempty 

set of vertices 𝑉 and a set of directed edges (or arcs) 𝐸. Each 

directed edge is associated with an ordered pair of vertices. 
The directed edge associated with the ordered pair (𝑢, 𝑣) is 

said to start at 𝑢 and end at 𝑣.
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Simple Directed Graph:
When a directed graph has no loops and has no multiple 

directed edges, it is called a simple directed graph.

BS102 Discrete Mathematics

directed edge

A Computer Network 
with One-way 

Communications Links

Basic Types of Graphs
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Directed Multigraphs:
Directed graphs that may have multiple directed edges from a 

vertex to a second (possibly the same) vertex are used to 

model such networks. We called such graphs directed 

multigraphs. 

BS102 Discrete Mathematics

multiple directed edges 

A Computer Network with 
Multiple One-way Links

Basic Types of Graphs
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Mixed Graph:
For some models we may need a graph where some edges are 

undirected, while others are directed. A graph with both 

directed and undirected edges is called a mixed graph.

BS102 Discrete Mathematics

Mixed Graph

Basic Types of Graphs
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Structure of A Graph:
Three key questions can help us understand the structure of a 

graph:

1. Are the edges of the graph undirected or directed (or both)?

2. If the graph is undirected, are multiple edges present that

connect the same pair of vertices? If the graph is directed,

are multiple directed edges present?

3. Are loops present?

BS102 Discrete Mathematics
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Graph Models:
Graphs are used in a wide variety of models.

• Social Networks.

• Communication Networks.

• Information Networks.

• Transportation Networks.

• Biological Networks.

• Software Design Applications.

• Tournaments.

• Others…

BS102 Discrete Mathematics
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Social Networks:
Graphs are extensively used to model social structures based on different 

kinds of relationships between people or groups of people. 

Friendship Graphs: We can use a simple graph to represent 

whether two people know each other, that is, whether they are 

acquainted, or whether they are friends (either in the real world or 

in the virtual world via a social networking site such as Facebook). 

Influence Graphs: In studies of group behavior, it is observed 

that certain people can influence the thinking of others. 
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Social Networks:
Collaboration Graphs: is used to model social networks where 

two people are related by working together in a particular way.

➢ The Hollywood Links graph is a collaborator graph that

represents actors by vertices and connects two actors with an edge

if they have worked together on a movie or television show. The

Hollywood graph is a huge graph with more than 2.9 million

vertices (as of early 2018).

➢ In an academic collaboration graph, vertices represent people and
edges link two people if they have jointly published a paper. The
collaboration graph for people who have published research papers in
mathematics was found in 2004 to have more than 400,000 vertices
and 675,000 edges.

BS102 Discrete Mathematics
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• Computer networks:
– Nodes – computers
– Edges - connections
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Transportation Networks:
We can use graphs to model many 

different types of transportation 

networks, including road, air, and 

rail networks, as well as shipping

networks.

BS102 Discrete Mathematics
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Biological Networks:
Many aspects of the biological sciences can be modeled using 

graphs. Protein Interaction Graphs: A protein interaction in a 

living cell occurs when two or more proteins in that cell bind 

to perform a biological function.

BS102 Discrete Mathematics
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Semantic Networks:

BS102 Discrete Mathematics

This figure to help determine mouse

refers to an animal or computer 

hardware in the sentence.

Graph models are used extensively in natural language 

understanding and in information retrieval. Natural language 

understanding (NLU) is the subject of enabling machines to 

disassemble and parse human speech. Its goal is to allow machines 

to understand and communicate as humans do.
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Software Design Applications:
Graph models are useful tools in the design of software. 

Module Dependency Graphs. One of the most important tasks 

in designing software is how to structure a program into 

different parts, or modules. Understanding how the different 

modules of a program interact is essential not only for program 

design, but also for testing and maintenance of the resulting 

software.

BS102 Discrete Mathematics

web browser
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Tournaments:
Round-Robin Tournaments. A tournament where each team 

plays every other team exactly once and no draws are allowed.

BS102 Discrete Mathematics

We see that Team 1 is undefeated in this 
tournament, and Team 3 is winless.
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Tournaments:
Single-Elimination Tournaments. A tournament where each 

contestant is eliminated after one loss

BS102 Discrete Mathematics
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Definition 1:
Two vertices 𝑢 and 𝑣 in an undirected graph G are called 

adjacent (or neighbors) in G if u and v are endpoints of an

edge 𝑒 of G. Such an edge 𝑒 is called incident with the 

vertices 𝑢 and 𝑣 and 𝑒 is said to connect 𝑢 and 𝑣.

BS102 Discrete Mathematics

𝑣𝑢

edge (𝑢, 𝑣)
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Definition 2:
The set of all neighbors of a vertex 𝑣 of 𝐺 = (𝑉, 𝐸), denoted 

by 𝑁(𝑣), is called the neighborhood of 𝑣. If 𝐴 is a subset of 

𝑉, we denote by 𝑁(𝐴) the set of all vertices in 𝐺 that are 

adjacent to at least one vertex in 𝐴. So, 𝑁(𝐴) = 𝑣∈𝐴𝑁ڂ 𝑣 .

BS102 Discrete Mathematics

𝑵 𝒂 = 𝒃, 𝒇

𝑵 𝒃 = 𝒂, 𝒄, 𝒆, 𝒇

𝑵 𝒄 = 𝒃,𝒅, 𝒆, 𝒇

𝑵 𝒅 = 𝒄

𝑵 𝒆 = 𝒃, 𝒄, 𝒇

𝑵 𝒇 = 𝒂, 𝒃, 𝒄, 𝒆

𝑵 𝐠 = ∅
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Definition 3:
The degree of a vertex in an undirected graph is the number

of edges incident with it, except that a loop at a vertex 

contributes twice to the degree of that vertex. The degree of 

the vertex v is denoted by deg(v).

isolated

deg(𝑎) = 2

deg(𝑏) = 4

deg(𝑐) = 4

deg(𝑑) = 1

deg(𝑒) = 3

deg(𝑓) = 4

deg(g) = 0

pendant
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Isolated:
A vertex of degree zero is called isolated. It follows that an

isolated vertex is not adjacent to any vertex. 

Vertex g is isolated.

BS102 Discrete Mathematics

deg(𝑎) = 2

deg(𝑏) = 4

deg(𝑐) = 4

deg(𝑑) = 1

deg(𝑒) = 3

deg(𝑓) = 4

deg(g) = 0
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Pendant:
A vertex is pendant if and only if it has degree one.

Vertex 𝑑 is pendant.

BS102 Discrete Mathematics

deg(𝑎) = 2

deg(𝑏) = 4

deg(𝑐) = 4

deg(𝑑) = 1

deg(𝑒) = 3

deg(𝑓) = 4

deg(g) = 0
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Example 1:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

deg(𝑎) =

deg(𝑏) = 

deg(𝑐) = 

deg(𝑑) = 

deg(𝑒) = 
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Example 1:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

deg(𝑎) = 4

deg(𝑏) = 6

deg(𝑐) = 1

deg(𝑑) = 5 

deg(𝑒) = 6
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Example 1:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

deg(𝑎) = 4

deg(𝑏) = 6

deg(𝑐) = 1

deg(𝑑) = 5 

deg(𝑒) = 6

Vertex 𝒄
is pendant
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Example 1:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

𝑁(𝑎) =

𝑁(𝑏) = 

𝑁(𝑐) = 

𝑁(𝑑) = 

𝑁(𝑒) = 
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Example 1:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

𝑁(𝑎) = {𝑏, 𝑑, 𝑒}

𝑁(𝑏) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

𝑁(𝑐) = 𝑏

𝑁(𝑑) = {𝑎, 𝑏, 𝑒}

𝑁(𝑒) = 𝑎, 𝑏, 𝑑
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Example 2:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

Number of vertices = 5

Number of edges = 13
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Example 2:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

deg(𝑎) =

deg(𝑏) = 

deg(𝑐) = 

deg(𝑑) = 

deg(𝑒) = 
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Example 2:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

deg(𝑎) = 6

deg(𝑏) = 6

deg(𝑐) = 6

deg(𝑑) = 5

deg(𝑒) = 3
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Example 2:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

𝑁(𝑎) = 

𝑁(𝑏) = 

𝑁(𝑐) =

𝑁(𝑑) = 

𝑁(𝑒) =



46©Ahmed Hagag

Example 2:
What are the degrees and what are the neighborhoods of the 

vertices in the following graph?

BS102 Discrete Mathematics

𝑁(𝑎) = {𝑎, 𝑏, 𝑒}

𝑁(𝑏) = {𝑎, 𝑒, 𝑑, 𝑐}

𝑁(𝑐) = 𝑏, 𝑐, 𝑑

𝑁(𝑑) = {𝑒, 𝑏, 𝑐}

𝑁(𝑒) = 𝑎, 𝑏, 𝑑
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The Handshaking Theorem:
Let 𝐺 = (𝑉, 𝐸) be undirected graph with 𝑚 edges. Then

2𝑚 = ෍

𝑣∈𝑉

deg(𝑣)

BS102 Discrete Mathematics

edge

Edge having two endpoints 
and a handshake involving 

two hands. 
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Example 3:
How many edges are there in an undirected graph with 10 

vertices each of degree six?

BS102 Discrete Mathematics
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Example 3: Answer
How many edges are there in a graph with 10 vertices each of 

degree six?

2𝑚 = ෍

𝑣∈𝑉

deg(𝑣)

Solution:

Because the sum of the degrees of the vertices is 6 · 10 = 60, 

it follows that 2m = 60. Therefore, m = 30.

BS102 Discrete Mathematics
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Definition 
When (u, v) is an edge of the graph G with directed edges, u 
is said to be adjacent to v and v is said to be adjacent from u. 

The vertex u is called the initial vertex of (u, v), and v is 
called the terminal or end vertex of (u, v). The initial vertex 
and terminal vertex of a loop are the same.

BS102 Discrete Mathematics

𝑣𝑢

edge (u, v)
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Definition 
In a graph with directed edges the in-degree of a vertex 𝑣, 
denoted by deg−(𝑣), is the number of edges with 𝑣 as their 
terminal vertex. 

The out-degree of 𝑣, denoted by deg+(𝑣), is the number of 
edges with 𝑣 as their initial vertex. 

(Note that a loop at a vertex contributes 1 to both the in-

degree and the out-degree of this vertex.)

BS102 Discrete Mathematics
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Example 4:

BS102 Discrete Mathematics

deg−(𝑎) =

deg−(𝑏) =

deg−(𝑐) =

deg−(𝑑) =

deg−(𝑒) =

deg−(𝑓) =

Number of vertices = 

Number of edges = 

deg+(𝑎) =

deg+(𝑏) =

deg+(𝑐) =

deg+(𝑑) =

deg+(𝑒) =

deg+(𝑓) =
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Example 4:

BS102 Discrete Mathematics

deg−(𝑎) = 2

deg−(𝑏) = 2

deg−(𝑐) = 3

deg−(𝑑) = 2

deg−(𝑒) = 3

deg−(𝑓) = 0

Number of vertices = 6

Number of edges = 12

deg+(𝑎) = 4

deg+(𝑏) = 1

deg+(𝑐) = 2

deg+(𝑑) = 2

deg+(𝑒) = 3

deg+(𝑓) = 0
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Complete Graphs:
The complete graph on 𝑛 vertices, denoted by 𝐾𝑛, is the

simple graph that contains exactly one edge between each 

pair of distinct vertices. 

The graphs 𝐾𝑛, for 𝑛 = 1, 2, 3, 4, 5, 6, are:

BS102 Discrete Mathematics

alaaj
Rectangle

alaaj
Underline



59©Ahmed Hagag

Cycles:
The cycle 𝐶𝑛, 𝑛 ≥ 3, consists of 𝑛 vertices 𝑣1, 𝑣2, … , 𝑣𝑛 and

edges 𝑣1, 𝑣2 , 𝑣2, 𝑣3 , … , 𝑣𝑛−1, 𝑣𝑛 and 𝑣𝑛, 𝑣1 .

The cycles 𝐶3, 𝐶4, 𝐶5, and 𝐶6 are:

BS102 Discrete Mathematics
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Wheels:
We obtain the wheel 𝑊𝑛 when we add an additional vertex to

the cycle 𝐶𝑛, for 𝑛 ≥ 3, and connect this new vertex to each

of the 𝑛 vertices in 𝐶𝑛, by new edges.

The wheels 𝑊3, 𝑊4, 𝑊5, and 𝑊6 are:

BS102 Discrete Mathematics
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Definition 6: Bipartite Graphs:

A simple graph G is called bipartite if its vertex set 𝑉 can be 

partitioned into two disjoint sets 𝑉1 ad 𝑉2 such that every

edge in the graph connects a vertex in 𝑉1 and a vertex in 𝑉2

(so that no edge in 𝐺 connects either two vertices in 𝑉1 or two

vertices in 𝑉2). When this condition holds, we call the pair

(𝑉1, 𝑉2) a bipartition of the vertex set 𝑉 of 𝐺.

BS102 Discrete Mathematics
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Example 1:
Determine whether the graph is bipartite or not? 

BS102 Discrete Mathematics

𝑏

𝑎

𝑐 𝑏

𝑎

𝑐

𝑑

𝑏

𝑎

𝑐

𝑑

𝑒

𝑏

𝑎

𝑐

𝑑

𝑒 𝑓

Determining whether it is possible to assign either red or blue to

each vertex so that no two adjacent vertices are assigned the same 

color. 
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Example 1: Answer
Determine whether the graph is bipartite or not? 

BS102 Discrete Mathematics

𝑏

𝑎

𝑐 𝑏

𝑎

𝑐

𝑑

𝑏

𝑎

𝑐

𝑑

𝑒

𝑏

𝑎

𝑐

𝑑

𝑒 𝑓

Determining whether it is possible to assign either red or blue to

each vertex so that no two adjacent vertices are assigned the same 

color. 
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Example 1: Answer
Determine whether the graph is bipartite or not? 
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𝑏

𝑎

𝑐 𝑏

𝑎

𝑐

𝑑

𝑏

𝑎

𝑐

𝑑

𝑒

𝑏

𝑎

𝑐

𝑑

𝑒 𝑓

𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒 𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒

𝑉1 = 𝑎, 𝑐
𝑉2 = 𝑏, 𝑑
every edge of 𝐶4 connects a

vertex in 𝑉1 and a vertex in 𝑉2.

𝑉1 = 𝑎, 𝑐, 𝑒
𝑉2 = 𝑏, 𝑑, 𝑓
every edge of 𝐶6 connects a

vertex in 𝑉1 and a vertex in 𝑉2.
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Example 1: Answer
Determine whether the graph is bipartite or not? 

BS102 Discrete Mathematics

𝑎

𝑒

𝑏

𝑎

𝑐

𝑑

𝑒 𝑓

𝑏𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒

𝑉1 = 𝑎, 𝑐, 𝑒
𝑉2 = 𝑏, 𝑑, 𝑓
every edge of 𝐶6 connects a

vertex in 𝑉1 and a vertex in 𝑉2.

𝑎
𝑐
𝑒

𝑏
𝑑
𝑓
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Example 2:
Determine whether the graph is bipartite or not? 
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Example 2: Answer
Determine whether the graph is bipartite or not? 
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Example 2: Answer
Determine whether the graph is bipartite or not? 
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𝑵𝒐𝒕 𝒃𝒊𝒑𝒂𝒓𝒕𝒊𝒕𝒆
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Complete Bipartite Graphs:
A complete bipartite graph 𝐾𝑚,𝑛 is a graph that has its vertex

set partitioned into two subsets of 𝑚 and 𝑛 vertices, 

respectively with an edge between two vertices if and only if 

one vertex is in the first subset and the other vertex is in the 

second subset. 
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New Graphs from Old:
Sometimes we need only part of a graph to solve a problem. 

For instance, we may care only about the part of a large 

computer network that involves the computer centers in some 

cities. Then we can ignore the other computer centers and all 

telephone lines not linking two of these specific computer 

centers.
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Definition 7:
A subgraph of a graph 𝐺 = (𝑉, 𝐸) is a graph 𝐻 = (𝑊, 𝐹), 

where 𝑊 ⊆ 𝑉 and 𝐹 ⊆ 𝐸. A subgraph 𝐻 of 𝐺 is a proper 

subgraph of 𝐺 if 𝐻 ≠ 𝐺.

BS102 Discrete Mathematics

We can remove the vertices and edges from original graph

Original 
Graph
𝑲𝟓

Proper 
Subgraph of 
The Original 

Graph 
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Definition 8:
Let 𝐺 = (𝑉, 𝐸) be a simple graph. The subgraph induced by 

a subset 𝑊 of the vertex set 𝑉 is the graph (𝑊, 𝐹), where the 

edge set 𝐹 contains an edge in 𝐸 if and only if both endpoints

of this edge are in 𝑊

BS102 Discrete Mathematics

Remove the vertices and its edges from original graph

Original 
Graph
𝑲𝟓

Subgraph 
Induced 
by 𝑾 =
𝒂, 𝒃, 𝒄, 𝒆
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Removing or Adding Edges of A Graph:

BS102 Discrete Mathematics

𝐺 − {𝑏, 𝑐}: Remove the edge {𝑏, 𝑐}

Original 

Graph (𝑮)
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Removing or Adding Edges of A Graph:

BS102 Discrete Mathematics

𝐺 + {𝑒, 𝑑}: Add the edge {𝑒, 𝑑}

Original 

Graph (𝑮)
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Removing Vertices from A Graph:

BS102 Discrete Mathematics

𝐺 − 𝑐: Remove the vertex 𝑐

Original 

Graph (𝑮)



77©Ahmed Hagag

Edge Contractions:

BS102 Discrete Mathematics

𝐺 contracted by replacing {𝑏, 𝑐} by 𝑓

Original 

Graph (𝑮)
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Graph Unions:

BS102 Discrete Mathematics



Trees  



• Tree 
• We will call every circle a node and each line an edge. 
•  Nodes "19", "21", "14" are below node "7" and are directly connected to 

it. This nodes we are called direct descendants (child nodes) of node "7", 
and node "7" their parent.  

 
• The same way "1", "12" and "31" are children of "19" and "19" is their 

parent. Intuitively we can say that "21" is sibling of "19", because they are 
both children of "7“ 
 

• .For "1", "12", "31", "23" and "6" node "7" precedes them in the hierarchy, 
so he is their indirect parent – ancestor, ant they are called his 
descendants. 



• Root is called the node without parent. In our example this is node "7“ 
 

• Leaf is a node without child nodes. In our example – "1", "12", "31", "21", 
"23" and "6". 
 

• Internal nodes are the nodes, which are not leaf or root (all nodes, which 
have parent and at least one child). Such nodes are "19" and "14". 
 

• Path is called a sequence of nodes connected with edges, in which there 
is no repetition of nodes. Example of path is the sequence "1", "19", "7" 
and "21". The sequence "1", "19" and "23" is not a path, because "19" and 
"23" are not connected. 
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• Path length is the number of edges, connecting the sequence of nodes in the path. 
Actually it is equal to the number of nodes in the path minus 1. The length of our 
example for path ("1", "19", "7" and "21") is three. 

• Depth of a node we will call the length of the path from the root to certain node. 
In our example "7" as root has depth zero, "19" has depth one and "23" – depth 
two. 

• We can give more simple definition of tree: a node is a tree and this node can 
have zero or more children, which are also trees. 

• Height of tree – is the maximum depth of all its nodes. In our example the tree 
height is 2. 

• Degree of node we call the number of direct children of the given node. The 
degree of "19" and "7" is three, but the degree of "14" is two. The leaves have 
degree zero. 
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Rooted Tree 
• A rooted tree G is a connected acyclic graph with a special node 

that is called the root of the tree and every edge directly or 
indirectly originates from the root. 
 

•  An ordered rooted tree is a rooted tree where the children of 
each internal vertex are ordered. 
 

•  If every internal vertex of a rooted tree has not more than m 
children, it is called an m-ary tree.  
 

• If every internal vertex of a rooted tree has exactly m children, it 
is called a full m-ary tree. 
 

•  If m=2, the rooted tree is called a binary tree. 
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Binary Search Tree 
• Binary Search tree is a binary tree which satisfies the following property − 
• X in left sub-tree of  vertex V, Value(X) ≤ Value(V) 

 
• Y in right sub-tree of vertex V, Value(Y) ≥ Value(V) 
 
• So, the value of all the vertices of the left sub-tree of an internal node V are less 

than or equal to V  
 
      and the value of all the vertices of the right sub-tree of the internal    
       node V are greater than or equal to V.  
 
       The number of links from the root node to the deepest node is the     
        height of the Binary Search Tree. 
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A spanning tree  
of a connected undirected graph G is a tree that minimally includes all of the vertices of G. A 
graph may have many spanning trees. 
Example 
Spanning Trees 

 



 
 
 
Minimum Spanning Tree 
A spanning tree with assigned weight less than or equal to the weight of every 
possible spanning tree of a weighted, connected and undirected graph G 
, it is called minimum spanning tree (MST). The weight of a spanning tree is the sum of  
all the weights assigned to each edge of the spanning tree. 
Example 
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Kruskal's Algorithm 
• Kruskal's algorithm is a greedy algorithm that finds a minimum 

spanning tree for a connected weighted graph. It finds a tree of that 
graph which includes every vertex and the total weight of all the 
edges in the tree is less than or equal to every possible spanning 
tree. 

• Algorithm 
• Step 1 − Arrange all the edges of the given graph G(V,E) 
• in non-decreasing order as per their edge weight. 
• Step 2 − Choose the smallest weighted edge from the graph and 

check if it forms a cycle with the spanning tree formed so far. 
• Step 3 − If there is no cycle, include this edge to the spanning tree 

else discard it. 
• Step 4 − Repeat Step 2 and Step 3 until (V−1) 
• number of edges are left in the spanning tree 



Problem 
Suppose we want to find minimum spanning tree for the 

following graph G using Kruskal’s algorithm 
 Solution 

From the above graph we construct the following 
table − 

Edge No. Vertex Pair Edge Weight 

E1 (a, b) 20 

E2 (a, c) 9 

E3 (a, d) 13 

E4 (b, c) 1 

E5 (b, e) 4 

E6 (b, f) 5 

E7 (c, d) 2 

E8 (d, e) 3 

E9 (d, f) 14 
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Now we will rearrange the table in ascending order with respect 

to Edge weight − 
Edge No. Vertex Pair Edge Weight 

E4 (b, c) 1 

E7 (c, d) 2 

E8 (d, e) 3 

E5 (b, e) 4 

E6 (b, f) 5 

E2 (a, c) 9 

E3 (a, d) 13 

E9 (d, f) 14 

E1 (a, b) 20 
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Since we got all the 5 edges in the last figure, we stop 
the algorithm and this is the minimal spanning tree 
and its total weight is (1+2+3+5+9)=20. 
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