WHAT IS A SET?

A set is any well-defined list or collection of things, and will be denoted
by capital letters A, B, X, Y,.......

Below you'll see just a sampling of items that could be considered as sets:

o Your favorite clothes
e A coin collection

o The items in a store

o The English alphabet
o Even numbers

A set could have as many entries as you would like.
It could have one entry, 10 entries, 15 entries, infinite number of entries,
or even have no entries at all!

For example, in the above list the English alphabet would have 26 entries,
while the set of even numbers would have an infinite number of entries.

Each entry in a set is known as an element or member and will be
denoted by lower case letters a,b,x,y,.....

Sets are written using curly brackets "{" and "}", with their elements
listed in between.

For example the English alphabet could be written as

{a,b,c,d,e.f,g,h,1,j,k,1,m,n,0,p,q,r,s,t,u,v,w,x,y,z}

and even numbers could be {0,2,4,6,8,10,...} (Note: the dots at the end
indicating that the set goes on infinitely)



Elements

By now you know each entry in a set is called an element

Principles:
€ belong to
¢ not belong to
C subset
C proper subset
¢ not subset

€ means "belong to"; ¢ means "not belong to"
So we could replace the statement "a is belong to the alphabet" with
a € {alphabet} and replace the statement "3 is not belong to the set of
even numbers" with 3 ¢ {Even numbers}

Now if we named our sets we could go even further.
Give the set consisting of the alphabet the name A, and give the set
consisting of even numbers the name E.

We could now write
aeA

and

3¢E.

There are three ways to specify a particular set:

1) By list its members (if it is possible), for example, A= {a,e,i,o,u}

2) By state those properties which characterize the elements in the
set, for example, A={x:x is a letter in the English alphabet, x is a
vowel}

3) Venn diagram : ( A graphical representation of sets).



Example (1)
A={x:x 1s a letter in the English alphabet, x is a vowel}

e € A (eis belong to A)
f ¢ A (fis not belong to A)

Example (2)
X is the set {1,3,5,7,9}

3eX
4 ¢ X

Universal set, empty set:

In any application of the theory of sets, the members of all sets under
investigation usually belong to some fixed large set called the universal
set. For example, in human population studies the universal set consists
of all the people in the world. We will let the symbol U denotes the
universal set.

The set with no elements is called the empty set or null set and is denoted
by @ or {}.



Subsets:

Every element in a set A is also an element of a set B, then A is called a
subset of B. We also say that B contains A. This relationship is written:
AcB or BoA
If A is not a subset of B, i.e. if at least one element of A dose not belong
to B, we write A & B.

Example:

Consider the sets.
A=1{13,45,809} B={1,23,57} and C={1,5}

Then Cc A and Cc B since 1 and 5, the element of C, are also members
of A and B.

But B& A since some of its elements, e.g. 2 and 7, do not belong to A.
Furthermore, since the elements of A,B and C must also belong to the
universal set U, we have that U must at least the set {1,2,3,4,5,7,8,9}.

AcB : {VxeA = xeB
AgzB : {dxeA but x¢B
V: For all Jd

3: There exists &Y e aa g

The notion of subsets is graphically illustrated below



In this first illustration B is entirely within A so B — A.

In this second illustration A and B have nothing in common (A N B = &)

so we could write

Az Band B ¢ A.
In this last illustration some of B is in A, but not all of B 1s in A so we
could write B ¢ A.

Set of numbers:

Several sets are used so often, they are given special symbols.

The natural numbers

N={0,1,23,...}



The integers
Z,=NU {...,—2,—1}
The rational numbers

Q=ZU { ..,—1/3, —1/2,1/2, 1/3, ...,2/3,2/5,...}
Where Q={a/b:a,b e Z, b+0}
The real numbers

R=0Qu {...,—fr,—v@,x/_,fr,...}
The complex numbers

C=RU{i1+i1—4V2+mi...}
Where C={x+iy;x,y eR;i=1-1}

Theorem 1:

For any set A, B, C:
I-OcAcU.

2-AcCA.
3-IfAcBand Bc C, then A c C.

4- A=Bifand onlyif Ac B and B C A.



Set operations:
1) UNION:

A union of two or more sets is another set that contains everything
contained in the previous sets.

If A and B are sets then A U B represents the union of A and B:
AUB= {x:xeAorx e B}

Example

A={1,2,3.4,5} B={5,7,9,11,13}
AUB={1,2,34,57,9,11,13}

Notice that when I wrote out the united set [ did not write "5" twice. [
simply listed all of the new sets elements.

A



2) INTERSECTION

The intersection of two (or more) sets is those elements that they have in
common.

So if A and B are sets then the intersection (the elements they both have
in common) is denoted by A n B.

ANB={x:x e€Aandx €B}.

A B
Example 1:
A={1,3,5,7,9} B={2,3,4,5,6}
The elements they have in common are 3 and 5
ANB={3,5}
Example 2

A={The English alphabet} B={vowels}
So A N B = {vowels}

Example 3
A={1,2,3,4,5} B={6,7,8,9,10}

In this case A and B have nothing in common.
ANnB=9Y



3) THE DIFFERENCE:

The difference of two sets A\B or A-B is those elements which belong to
A but which do not belong to B.
AB={x:x €A, x ¢ B}

4) COMPLEMENT OF SET:
Complement of set A® or A', is the set of elements which belong to
U but which do not belong to A .
A°={x:x eU,x g A}



Example :
let A={1,2,3} B={3,4} U={1,2,3,4,5,6}

Find :
AuUB={1,23,4}
ANB={3}
A-B={1,2}
A°=1{4,5,6}

Theorem 2 :
AcB,AnB=A,AuUB=B areequivalent
Theorem 3: (Algebra of sets)
Sets under the above operations satisfy various laws or identities which

are listed below:

I-AUA=A
ANnA=A

2-(AuB)uC=AuBuU O Associative laws
ANB)NnC=AnNnBNOC)

3-AuUB=BUA Commutatively
AnNnB=BnA

4-Au(BNnC)=(A UB) N (AU Distributive laws
AnBulC)=(AnBuUuAn O

5-AVd=A Identity laws
AnU=A

6-AuU=U Identity laws
Angd=

7-(A°)°=A Double complements



8-AUA° =1 Complement intersections
ANA° =0 and unions

9-U°® =Y
g°¢ =U

10-(AuB)® =A°n B° De Morgan's laws
(AnB)" =A° U B°

We discuss two methods of proving equations involving set operations.

The first is to break down what it means for an object x to be an element

of each side, and the second is to use Venn diagrams.

For example, consider the first of De Morgan's laws :
(AUB)" =A°n B°

We must prove: 1)(AUB)® <« A°n B°
2)A° N B°c (AUB)®

We first show that (AUB)® <« A° N B°

Let's pick an element at random x €(A U B)° . We don't know anything
about x, it could be a number, a function, or indeed an elephant. All we
do know about x, is that

x e(AUB)®,so
x¢g AUB

because that's what complement means. Therefore
xg A and x ¢ B,

by pulling apart the union. Applying complements again we get

xe A and x eB°



Finally, if something is in 2 sets, it must be in their intersection, so
xeA°n B¢
So, any element we pick at random from : (A U B)® is definitely in,

A° n B° , 0 by definition

(AUB) ¢ A°n B°
Next we show that (A° N BY)c (AUB)‘.

This follows a very similar way. Firstly, we pick an element at random
from the first set, x € (A° N BY)

Using what we know about intersections, that means
x € A° and xeB°
Now, using what we know about complements,
x¢ A and x¢B.
If something is in neither A nor B, it can't be in their union, so
xgA UB,

And finally

xe (A U B)°
We have prove that every element of (A U B)° belongsto A° N B
and that every element of A° " B® belongs to A U B)° . Together,
these inclusions prove that the sets have the same elements, i.e. that

(AUB)* =A°n B°



EXERCISE:

1- LET A={1,2,4,a,b,c}. Answer each of the following as True or False.

2eA
3€A
cgA
JeA
DgA
AeA

o a0 o

2- Let A={ab,c,g}
B={d, e,f,g}
C={a,c.f}
D={f,h,k}
U={a,b,c,d,e,f,g,h k}
Compute: AUB, BuC, AnB, AnC,A-B,BnD ,A".



Power set

The power set of some set S, denoted P(S), is the set of all subsets of S
(including S itself). (The empty set is a subset of all sets.)

For example, P({0,1})={{},{0},{1},{0,1}}
Example : Let A= { 1,2 3}

Power set of set A = P(A) =[{1},{2},{3},{1,2},{1,3},{2,3},{},A]

Cardinality

The cardinality of a set S, denoted |S|, is simply the number of elements a
set has. So |{a,b,c,d}|=4, and so on. The cardinality of a set need not be
finite: some sets have infinite cardinality.

The cardinality of the power set
If P(S)=T, then |T|=2""

This 1s because T contains sets representing all possible combinations of
existence or nonexistence of the elements of P, meaning that each
element can be in two states: in the subset, or not in the subset.

Since the number of possible combinations of different states of objects
is the multiple of all the number of possible states of each object, and
since each element in P can have exactly two states for each subset of
P(in the subset or not in the subset), it is therefore inferable that the
number of subsets for P is 2.



Problem set:

Based on the above information, write the answers to the following
questions.

1. [{1,2,3,4,5,6,7,8,9,0}

2. |P({1,2,3})|

3. P({0,1,2})
4. P({1})
Answers
1. 10
2. 2°=8
3. {{},{0},{1},{2},{0,1},{0,1,2},{0,2},{1,2} }
4. {{1L{1}}

The Cartesian Product

The Cartesian Product of two sets 1s the set of all tuples made from
elements of two sets. We write the Cartesian Product of two sets A and B
as A x B. It is defined as:

Ax B ={(a,b)lac Aand bc B}

It may be clearer to understand from examples;

(0,1} x (23] - {(0.2.(0.3),(1.2), (1.9)}
(a.0} x {e.d = {(a, ), (0,01, 50), 5, )
0,1,2} x {4,6} = {(0,4),(0,6),(1,4),(1,6),(2,4),(2,6)}



It is clear that, the cardinality of the Cartesian product of two sets A and
B is:

|4 x B| =[A||B|

A Cartesian Product of two sets A and B can be produced by making
tuples of each element of A with each element of B; this can be visualized
as a grid (which Cartesian implies) or table: if, e.g., A={0,1} and B=
{2,3},the grid is
A
0 1
2 (0,2) (1,2)

3 (0,3) (1,3)

Problem set

Based on the above information, answer the following questions:
1. {2,3,4}x{1,3,4}
2. {0,1}x{0,1}

3. [{1,2,3}x{0}|
4. [{1,1}x{2,3,4}|

Answers

1. {(2,1),(2,3),(2,4),(3,1),(3,3),(3.4),(4,1),(4,3),(4,4)}
2. {(0,0),(0,1),(1,0),(1,1)}

3.3

4.6



Partitions of set:

Let S be a any nonempty set. A partition ([]) of S is a subdivision of S
into nonoverlapping, nonempty subsets. A partition of S is a collection
{Ai} of non-empty subsets of S such that:

1) Ai=D, where 1=1,2,3,......

2)AiNAj=< wherei#].

3) UAi:S where A1 UAz U cvieiiieineeenns UAi:S
Example 1:

let A={1,2,3,n}

Al = {1}, A2={3,n}, A3=1{2}
[T1= {Al, A2, A3} is a partition on A because it satisfy the three above
conditions

Example 2 :

Consider the following collections of subsets of S = {1,2,3,4,5,6,7,8,9}
1 [{1,3,5},{2,6},14.8,9}]
(1) [{1,3,5},{2,4,6,8},{5,7,9}]
(1) [{1,3,5},{2,4,6,8},{7,9}]

Then

(1) 1is not a partition of S since 7 in S does not belong to any of the
subsets.

(i1) 1s not a partition of S since {1,3,5} and {5,7,9} are not disjoint.

(iv)  1is a partition of S.

Mathematic induction:

It is useful for proving propositions that must be true for all integers or
for a range of integer.

Proposition: is any statement P(n) which can be either true or false for
each n in N. Suppose P has the following two properties.



Relations

There are many relations in mathematics :"less than" , "is parallel to ","1s
a subset of", etc. In a certain sense, these relations consider the existence
or nonexistence of a certain connection between pairs of objects taken in
a definite order. We define a relation simply in terms of ordered pairs of
objects.

Product sets:

Consider two arbitrary sets A and B . The set of all ordered pairs (a ,b)
where a € A and b € B is called the product, or cartesian product, of
A and B.

A xB={(a,b):acA and beB}

Example:
LetA={1,2} and B={a,b,c} then
AxB= {(1,a), (1,b),(1,c),(2,a),(2,b),(2,c)}
B x A ={(a,1),(a,2),(b,1),(b,2),(c,1),(c,2)}

Relations

Let A and B be sets. A binary relation, R, from A to B is a subset of
AXB. If (x,y) €R, we say that x is R-related to y and denote this by
xRy

if (x,y) R, we write x#y and say that x is not R-related to y .
if R is a relation from A to A ,i.e. R is a subset of A x A, then we say
that R 1is a relation on A.

The domain of a relation R is the set of all first elements of the ordered
pairs which belong to R, and the range of R is the set of second
elements.

Example 1:
Let A= {1, 2, 3,4}. Define a relation R on A by writing (x, y) € Rifx <
y. Then

R={(1,2),(1,3), (1,4), (2, 3), 2, 4), 3, 4)}.

Example 2:
let A= {1,2,3} and R = {(1,2),(1,3),(3,2)}. Then R is a relation on A
since it is a subset of AxA with respect to this relation:

IR2, 1R3,3R2 but (1,1)¢R & (2,1)¢R



The domain of R is {1,3} and
the range of R is {2,3}

Example 3:
Let A= {1, 2, 3}. Define a relation R on A by writing (x, y) € R, such
that a>b, list the element of R
aRb < a>b ,a,beA
s R={(1,1),(2,1), (2,2), (3,1), (3,2), (3,3)}.

Representation of relations:
1) By language
2) By ordered pairs
3) By arrow form
4) By matrix form
5) By coordinates
6) By graph form

Example 4:
Let A = {1,2,3}, the relation R on A such that: aRb < a>b; abeA
1) By language:
R={(a,b) : a,b €A and aRb «» a>b}

2) By ordered pairs
R =1{(2,1),3,1),(3,2)}

3) By arrow form

4) By matrix form
1

- O S
o o oW

0
1
1

]



5) By coordinates

6) By graph form

® 0

Properties of relations :

Let R be a relation on the set A

1) Reflexive : R isreflexiveif: Va €A —aRa or (a,a)e R;Va,b
eA

2) Symmetric : aRb — bRa V a,b €A

3) Transitive : aRb A bRc — aRc

4) Equivalence relation : it is Reflexive & Symmetric & Transitive

5) Irreflexive : V a €A (a,a) ¢ R

6) AntiSymmetric : if aRb and bRa — a=b
the relations >,< and < are antisymmetric

Example 5:
Consider the relation of C of set inclusion on any collection of sets:
1) A c A for any set, so cis reflexive
2) A < B dose not imply B < A, so — is not symmetric
3) If AcBandB c Cthen A c C, so c is transitive
4) c is reflexive, not symmetric & transitive, so C is not equivalence
relations
5) A c A, so cis not Irreflexive
6) If A < B and B c A then A =B, so c is anti-symmetric



Example 6:
IfA={1,2,3} and R={(1,1),(1,2),(2,1),(2,3)}
Is R equivalence relation ?
1) 21sin A but (2,2) ¢ R, so R is not reflexive
2) (2,3) € Rbut (3,2) ¢ R, so R is not symmetric
3) (1,2) €e Rand (2,3) € R but (1,3) ¢ R, so R is not transitive
So R is not Equivalence relation

Example 7 :
What is the properties of the relation =?
1) a=a for any element a € A, so = is reflexive
2) If a=bthen b= a, so=1s symmetric
3) Ifa=band b= c then a = ¢, so = is transitive
4) =1s (reflexive + symmetric + transitive), so = is equivalence
5) a=a, so =1s not Irreflexive
6) Ifa=b and b= a then a =b, so = is anti-symmetric

Inverse relations:
R'={(b,a): (a,b) € R}

Example 1 :
Let R be the following relation on A ={1,2,3}

R = {(1,2),(1,3),(2,3)}
s R'={2,1),3,1),(3,2)}

The matrix for R :
0 1 1
0 0 0

and
0 0 0
ME-1 _

0 0
1 0

MR is the transpose of matrix R



Composition of relations:

Let A, B, C be sets and let :
R:A—>B (Rc A x B)
S: B>C (S =B xC)
There is a relation from A to C denoted by
R © S (composition of R and S)
R°S:A->C
R °S={(a,c) : 3b € B for which (a,b) € R and (b,c) € S}

Example :
let A={1,2,3,4}
B={a,b,c,d}
C={xy,z}
R ={(1,2),(2,d),(3,2),(3,d),(3,b)}
S = {(b,x),(b,z),(c,y),(d,z)}. FindR°S?

Solution :
1) The first way by arrow form

R S

There is an arrow (path) from 2 to d which is followed by an arrow
fromdtoz

2Rd and dSz = 2(R°S)z
R°S={(3,x),(3,2),(2,2)}



2) The second way by matrix:

1

210 0 0O

MR =

4 (0 0 0 O

M5 =

R°S= Mgr.Mg

4 |0 0 O

R*°S =1{(2,2).,3.x),3,2)}



EXERCISE:

Let A={a,b} and B={4,5,6}
List the elements in AxB
List the elements B xA
List the elements AxA
List the elements BxB

e o

If A={a,b,c} B={1,2} and C={d,e} List all elements in A x B x C

IfAc Cand B < D, show that A xB c C xD.

A=Z:aR b and only if a+b is even.

Consider the following arrays

VERT={1,2,6,4} , TAIL={1,2,2,4,4,3,4,1} ,
HEAD={2,2,3,3,4,4,1,3}, NEXT={8,3,0,5,0,0,0}, these describe a
relation R on the set A={1,2,3,4}. Compute both the digraph of R
and the matrix M, .



Function:

Function is an important class of relation.
Definition:

Let A,B be two nonempty sets, a function F: A—B is a rule which
associates with each element of A a unique element in B.

The set A is called the domain of the function, and the set B is called
the range of the function.

Example:
consider the following relation on the set A={1,2,3}

F=1{(1,3),(2,3),3,1)}
F 1s a function

1 1
.4.2 .2 A
3 3

G={12},3,1)}
G 1s not a function from A to A

H = {(1,7),(2,1),(1,2),(3,1)}
H is not a function



One-to-one ,onto and invertible functions :

)

2)

3)

One —to-one : a function F:A—B is said to be one-to-one if
different elements in the domain (A) have distinct images.

If F(a) =F(a’) = a=a’

F:A— B is one-to-one if different elements in A have distinct
images

Onto

F:A—B is said to be an onto function if each element of B is the
image of some element of A.

VvV beB B aeA:F@)=b

Invertible (One-to-one correspondence)

F:A— B is invertible if its inverse relation f ' is a function F:A
—B

F:A— B is invertible if and only if F is both one-to-one and onto
F ' :{(b,a) V (a,b) € F}



one to one & not onto [3 B but it is not the image under f1]

B C

both one to one & onto
(or one to one correspondence between A and B)



not one to one & onto

not one to one & not onto



We can also describe the same information in the following transition
table:

I
0 1

T8 T = 59
59 51 84
83 = 8
54 55 &7
gt 56 81
ali = 4
57 - 53
—5g— - -
—8g— - -

EXERCISE.:

1-Consider a deterministic finite automata which will recognize the input
string 1(01) *and 1(11)*(0+1) ,and nothing else, then decide which of the
following string are accepted by this automata:
111,1111,11111,10110,1101,101110.



Linear Algebra

Linear Algebra

Chapter one

Matrices
A matrix is a rectangular array of numbers written between rectangular brackets,

as in:
1 -2 05 2
2 0 6 1
1.5 -1 21 0

It is also common to use large parentheses instead of rectangular brackets, as in:

1 -2 05 2
( 2 0 6 1
1.5 -1 21 0

We represent the matrices as a capital letters, A,B,C,..., ete, and the elements of the
matrix as a small letters , a,b,c,.. etc.

In general, With a real numbers m,n, a real-valued (m,n) matrix A is an m-n-tuple of
elements aij, i=1,2,...mand j= 1,2,...,n, which is ordered according to a
rectangular scheme consisting of m rows and n columns:

ap; Ay ot Ay
@1 4z - Qzy

A= . . . a,-jeR.
[ Am1 Am2 """ Apn |

Therefore, the matrix A can be represents as A = (a;j)mn and the matrix B can be
represents as : B = (B;;)mxn and so on.

An important attribute of a matrix is its size or dimensions, i.e., the numbers of
rows and columns. The matrix above has 3 rows and 4 columns, so its size is 3 x4.
A matrix of size m x n is called an m x n matrix.

The elements (or entries or coefficients) of a matrix are the values in the array.
The i,j element is the value in the ith row and jth column, denoted by double
subscripts: the i,j element of a matrix A is denoted a;; (or a;;when i or j is
more than one digit or character). The positive integers i and j are called the (row
and column) indices. If A is an m x n matrix, then the row index i runs from 1 to
m and the column index j runs from 1 to n. Row indices go from top to bottom,
so row 1 is the top row and row m is the bottom row. Column indices go from left
to right, so column 1 is the left column and column n is the right column.



Linear Algebra

If the matrix above is B, then we haveb,;; =0.5,b,5 = 6. The row index
of the bottom left element (which has value 4:1) is 3; its column index is 1.

Two matrices are equal if they have the same size, and the corresponding entries
are all equal.

Matrix indexing. As with vectors, standard mathematical notation indexes the
rows and columns of a matrix starting from 1. In computer languages, matrices
are often (but not always) stored as 2-dimensional arrays, which can be indexed in
a variety of ways, depending on the language. Lower level languages typically use
indices starting from O; higher level languages and packages that support matrix
operations usually use standard mathematical indexing, starting from 1.

Square, tall, and wide matrices. A square matrix has an equal number of rows
and columns. A square matrix of size n x n is said to be of order n. A tall matrix
has more rows than columns (size m x n with m > n). A wide matrix has more
columns than rows (size m x n with n > m).

Column and row vectors. An n-vector can be interpreted as an n x 1 matrix; we
do not distinguish between vectors and matrices with one column. A matrix with
only one row, i.e., with size 1 x n, is called a row vector; to give its size, we can

refer to it as an n-row-vector. As an example,

[-1.2 -3 0]

is a 3-row-vector (or 1 x 3 matrix). To distinguish them from row vectors, vectors
are sometimes called column vectors.
1
2
1.5

A (1 x 1) matrix is considered to be the same as a scalar.

Columns and rows of a matrix. An mxn matrix A has n columns, given by (the
m-vectors.

alj
azj

a =1 : Jforj=1.2,..,n
amj

The same matrix has m rows, given by the (n-row-vectors)
b; =[qi1 Q2. ], fori=12,..,n
As a specific example, the 2 x 3 matrix

4 5 ¢



Linear Algebra

hasfirsraw[1 2 3], (which is a 3-row-vector or a 1 x 3 matrix), and second

column
H

(which is a 2-vector or 2 x 1 matrix), also written compactly as (2; 5).

Block matrices and submatrices. It is useful to consider matrices whose entries are
themselves matrices, as in

4= i

where B, C, D, and E are matrices. Such matrices are called block matrices; the
elements B, C, D, and E are called blocks or submatrices of A. The submatrices
can be referred to by their block row and column indices; for example, C is the 1,2
block of A.

Block matrices must have the right dimensions to fit together. Matrices in the
same (block) row must have the same number of rows (i.e., the same ‘height’);
matrices in the same (block) column must have the same number of columns (i.e.,
the same ‘width’). In the example above, B and C must have the same number of
rows, and C and E must have the same number of columns. Matrix blocks placed
next to each other in the same row are said to be concatenated; matrix blocks
placed above each other are called stacked.

As an example, consider:

_ _ 2 2 1 2
B=[0 2 3] c[-1D=|] 5 E_[4]
Then the block matrix A above is given by
0 2 3 -1
A=|2 2 1 4
1 3 5 4

(Note that we have dropped the left and right brackets that delimit the blocks.
This is similar to the way we drop the brackets ina 1 x 1 matrix to get a scalar).

We can also divide a larger matrix (or vector) into ‘blocks’. In this context the
blocks are called submatrices of the big matrix. As with vectors, we can use colon
notation to denote submatrices. If A is an m x n matrix, and p, g, r, s are integers
with 1 <p<g<mand 1 <r <s<n, then Ap:q;r:s denotes the submatrix
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Apr Ap,r+1 Aps
A _ Ap+1,r Ap+1,r+1 AP+1,S
q,r:s — . . .
P | : . Eo
I. Aqr Aq,r+1 Aqs J

This submatrix has size (q -p + 1) x(s-r + 1) and is obtained by extracting from
A the elements in rows p through g and columns r through s.

For the specific matrix A above, we have

Az:33.4 = [é i]

Column and row representation of a matrix. Using block matrix notation we
can write an m x n matrix A as a block matrix with one block row and n block
columns,

A=[a1 az.. a],

where aj, which is an m-vector, is the jth column of A. Thus, an m x n matrix
can be viewed as its n columns, concatenated.

Similarly, an m x n matrix A can be written as a block matrix with one block
column and m block rows:

bm

where bi, which is a row n-vector, is the ith row of A. In this notation, the matrix
Ais interpreted as its m rows, stacked.

Examples:

Table interpretation. The most direct interpretation of a matrix is as a table of
numbers that depend on two indices, i and j. (A vector is a list of numbers that
depend on only one index.) In this case the rows and columns of the matrix usually
have some simple interpretation. Some examples are given below.

e Images. A black and white image with M xN pixels is naturally represented
asan M x N matrix. The row index i gives the vertical position of the pixel,
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the column index j gives the horizontal position of the pixel, and the i; |
entry gives the pixel value.

e Rainfall data. An m x n matrix A gives the rainfall at m different locations
on n consecutive days, so Ag, (which is a number) is the rainfall at location
4 on day 2. The jth column of A, which is an m-vector, gives the rainfall at
the m locations on day j. The ith row of A, which is n-row-vector, is the
time series of rainfall at location i.

e Asset returns. A T x n matrix R gives the returns of a collection of n assets
(called the universe of assets) over T periods, with Rj; giving the return of
asset j in period i. So Ry2.7 = -0:03 means that asset 7 had a 3% loss in
period 12. The 4th column of R is a T-vector that is the return time series for
asset 4. The 3rd row of R in the n-row-vector that gives the returns of all
assets in the universe in period 3.

An example of an asset return matrix, with a universe of n = 4 assets over
T = 3 periods, is shown in table 1 below:

Table 1 Daily returns of Apple (AAPL), Google (GOOG), 3M (MMM), and Amazon
(AMZN), on March 1, 2, and 3, 2016 (based on closing prices).

Date AAPL GOOG MMM AMZN
March 1, 2016 | 0.00219 0.00006 —0:00113 0.00202
March 2, 2016 | 0.00744 —0:00894 —0:00019 —0:00468
March 3, 2016 | 0.01488 —0:00215 0.00433 —0:00407

e Prices from multiple suppliers. An m x n matrix P gives the prices of n
different goods from m different suppliers (or locations): Pj; is the price that

supplier i charges for good j. The jth column of P is the m-vector of supplier
prices for good j; the ith row gives the prices for all goods from supplier i.

e Contingency table. Suppose we have a collection of objects with two
attributes, the first attribute with m possible values and the second with n
possible values. An m x n matrix A can be used to hold the counts of the
numbers of objects with the different pairs of attributes: A;j is the number
of objects with first attribute i and second attribute j. (This is the analog
of a count n-vector, that records the counts of one attribute in a collection.)
For example, a population of college students can be described by a 4 x 50
matrix, with the i, j entry the number of students in year i of their studies,
from state j (with the states ordered in, say, alphabetical order). The ith row
of A gives the geographic distribution of students in year i of their studies;
the jth column of A is a 4-vector giving the numbers of student from state |
in their first through fourth years of study.
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e Customer purchase history. An n x N matrix P can be used to store a set of
N customers’ purchase histories of n products, items, or services, over some
period. The entry Pj; represents the dollar value of product i that customer j
purchased over the period (or as an alternative, the number or quantity of the
product). The jth column of P is the purchase history vector for customer j;
the ith row gives the sales report for product i across the N customers.

Matrix representation of a relation or graph.

Suppose we have n objects labeled 1,2,... , n. A relation 2R on the set of
objects {1,2,...,n} is a subset of ordered pairs
of objects. As an example, R can represent a preference relation among n possible
products or choices, with (i, j) € R meaning that choice i is preferred to choice j.
A relation can also be viewed as a directed graph, with nodes (or vertices) labeled
1,2,..., n, and a directed edge from j to i for each (i, j) € R . This is typically drawn
as a graph, with arrows indicating the direction of the edge, as shown in figure 1,
for the relation on 4 objects

R =1{(1,2),(1,3),(2,1),(24),(34), (41)}

A relation R on {1,2, ..., n} is represented as nxn matrix A with

Aij:{l GLHeER (1.D)

0 (LHeR
This matrix is called the adjacency matrix associated with the graph. (Some authors

define the adjacency matrix in the reverse sense, with A; = 1 meaning there
is an edge from i to j.) The relation above for example, is represented by the matrix

0

_ o = O
S O O
S O O

1
1
0

This is the adjacency matrix of the associated graph, shown in figure 1.

Figure 1 The relation (1.1) as a directed graph.
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Types of matrices

Before we proceed to study the types of matrices we see it is better to mention some
expressions that relate to matrices, as follows: if A = (ai j) an mxn matrix, then:

1. We say the entries a;; of A a main diagonal of A if i=j.
2. We say the entries a;; of A a secondary diagonal of A if i+j=n+1.

There are many types of matrices resulting from different application fields. In this
lecture we focus on some of important matrices which are widely used in this course.

1. Square matrix: Let A = (a;;) be an mxn matrix, then A is said to be a
square matrix if m = n.

1 5 1
Examples: A = [_21 ;] ,B = [ 2 -1 4]
-2 0 2

2. Zero matrix:A matrix A = (a;;) is called a zero matrix if a;; =

0 foralliandj.
.42_J0 0 O
Examples.A—[O 0 0
3. ldentity matrix: A square matrix A = a;; is called an identity matrix if it is
. o (lifi=j .

satisfies the condition: a;; —{0 ifi ¢jand is denoted by I,
1 0 O

Examples:]2=[(1) 2],13=[0 1 O],...,In= 0 1 v 0
0 0 1 0 0 - 1

4. Diagonal matrix: The identity matrix is said to be diagonal matrix if at least
one of the entries of the main diagonal not equal one and is denoted by D,,.

2 01, |20 9 FRE
Examples:Dzz[0 _1],D3= 01 0|, ..Dp=|., | T .
0 0 -2 0 0 - 1
The notation diag(a,, a,,...,a,) is used to compactly describe the nxn
diagonal matrix A with diagonal entries A;; = ay, . . ., Ann = @n. AS examples,

the matrices above would be expressed as:
diog(2,-1) , diog(3,1,-2), diog(0.5.1, ...,1)

5. Triangular matrix: A square matrix is called lower triangular if all the
entries above the main diagonal are zero (or a;; = 0 for alli > j).

2 0 0
Example:A=(1 -9 0
4 -3 2

Similarly, a square matrix is called upper triangularif all the
entries below the main diagonal are zero (or a;; = 0 for all i < j).


https://en.wikipedia.org/wiki/Main_diagonal
https://en.wikipedia.org/wiki/Main_diagonal
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2 1 3
0 -9 -2

0 O 2

Example: A =

A triangular matrix is one that is either lower triangular or upper triangular.
One can see that a matrix that is both upper and lower triangular is called
a diagonal matrix.

Remarks:

Two matrices A and B are said to be equal ( written A=B) if and only if they have the
same size and every entry in the matrix A is equal to the corresponding entry in B,

ie, if
A= (al-j)mxn,B = (bij)pxk,thenA =B lff

i. m=pandn=k.
.  a;j=b; foralliandj.

Example: Let A = [_21 g]B = [_21 g],thenA = B.

Matrix transpose

If A'is an m x n matrix, its transpose, denoted A" (or sometimes Ator A*) is the
n x m matrix given by(A");; = A;;. In words, the rows and columns of A are
transposed in AT . For example,

1 4
ifA =2 5,thenAT=[1 z 3
s> 4 5 6

If we transpose a matrix twice, we get back the original matrix: (AT)T = A.

Transpose of block matrix. The transpose of a block matrix has the simple form
(shown here for a 2 x 2 block matrix)

A B]Tz[AT BT]
C D CT DT

where A, B, C, and D are matrices with compatible sizes. The transpose of a block
matrix is the transposed block matrix, with each element transposed.

Operations of Transposition


https://en.wikipedia.org/wiki/Diagonal_matrix
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If A and B are m x n matrices, then the following hold:
(A+B)" =A" + BT
(cA)T = cAT

An'=4

Symmetric matrix.

A square matrix A is symmetric if A= A",i.e.,A;; = Aj; for alli,j. Symmetric
matrices arise in several applications. For example, suppose that A is the adjacency
matrix of a graph or relation. The matrix A
is symmetric when the relation is symmetric, i.e., whenever (i,j) € R, we also have
(j,i) € R. An example is the friend relation on a set of n people, where (i,j) € R
means that person i and person j are friends. (In this case the associated graph is
called the ‘social network graph’).

Example:

_[2 5 . . . r_[2 5
Let A = [5 3] then A is symmetric matris since A" = [5 3]

Simple operation on matrices

Matrix Addition and Subtraction

The first matrix operations we discuss are matrix addition and subtraction. The rules for
these operations are simple.

Two matrices can be added (or subtracted) if and only if they have the same
dimensions.

To add (or subtract) two matrices of the same dimensions, we add (or subtract) the
corresponding entries. More formally, if A and B are m x n matrices, then A + B and
A - B are the m x n matrices whose entries are given by:

(A+B);j= A+ By ijth entry of the sum=sum of the ij th entry

(A—B);j= Ay — By ijth entry of the difference=difference of the ij th entry

Examples:
(2 31 [9 -5 [11 =2
1- |-1 5((+|0 3|=|-1 8 ]
4 =21 [-1 -3 3 =5
(2 31 [9 -5 [-7 8
2- |-1 5|—-]10 3|=|-1 2]
4 -2 1-1 =31 L5 1
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Scalar multiplication
If A'is an m x n matrix and c is a real number, then cA is the m x n matrix obtained by
multiplying all the entries of A by c. (We usually use lowercase letters c, d, e, ... to
denote scalars.) Thus, the i jth entry of cA is given by:

c(A)i; = (cA)y;
In words, this rule is: To get the i jth entry of cA, multiply the i jth entry of A by c.
Example:

9 -5
1. 3[0 3] =
-1 -3 -3 -9
9 -5 45 =25
2 0sfo 3|-| 0 s
-3 -0.5

-1 —-15

0 9

27 —15]

Properties of matrix addition and scalar multiplication

If A, B, and C are any m x n matrices and if O is the zero m x n matrix, then the
following hold:

A+ (B+C)=(A+B)+C | Associative law
A+B=B+A Commutative law
A+O=0+A=A Additive identity law
A+(-A)=0=(-A)+A Additive inverse law
c(A+B)=cA+cB Distributive law
(c+d)A=cA+dA Distributive law
1A=A Scalar unit

0A=0 Scalar zero

Matrix Multiplication

It is possible to multiply two matrices using matrix multiplication. You can multiply
two matrices A and B provided their dimensions are compatible, which means the
number of columns of A equals the number of rows of B. Suppose A and B are
compatible, e.g., A has size m x p and B has size p x n. Then the product matrix
C = AB is the m x n matrix with elements

D
Cl'j = zAl'kBkj = AilBlj + AiZBZj + -+ Aipoj , i = 1,2, m,] = 1,2, (R
k=1

There are several ways to remember this rule. To find the i; j element of the
product C = AB, you need to know the ith row of A and the jth column of B.
The summation above can be interpreted as ‘moving left to right along the ith row
of A’ while moving ‘top to bottom’ down the jth column of B. As you go, you
keep a running sum of the product of elements, one from A and one from B.
As a specific example, we have
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B i Ny

To find the 1; 2 entry of the right-hand matrix, we move along the first row of
the left-hand matrix, and down the second column of the middle matrix, to get
(-1.5)(-1) + (3)(-2) + (2)(0) = -4.5.

Remarks:

1. AlI=IA=A
2. AB # BAin general

3.If AB=BA then A and B are said commute. (Note that for
AB = BA to make sense, A and B must both be square.)

Properties of matrix multiplication. The following properties hold and are easy
to verify from the definition of matrix multiplication. We assume that A, B, and
C are matrices for which all the operations below are valid, and that y is a scalar.

e Associativity: (AB)C = A(BC).

e Associativity with scalar multiplication: y(AB) = (y4)B, where y is a scalar.

e Distributivity with addition: A(B+C) = AB+AC and (A+B)C = AC+BC

e Transpose of product: (AB)T = BTAT

e (A+B)(C+D)=AC+AD+BC+BD

Products of block matrices. Suppose A is a block matrix with mxp block
entries A;;, and B is a block matrix with pxn block entries B;; , and for each k =
1,2,...,p, the matrix product A;, B); makes sense, i.e., the number of columns of A;,
equals the number of rows of By, . (In this case we say that the block matrices
conform or are compatible.) Then C = AB can be expressed as the m x n block matrix
with entries C;; . For example, we have

[A BHE F _[AE—i-BG AF + BH
¢ Dpll¢ H! ICE+DG CF+DH

for any matrices A, B,C,D,E,F,G, H for which the matrix products above make sense.
This formula is the same as the formula for multiplying two 2 x 2 matrices (i.e., with
scalar entries); but when the entries of the matrix are themselves matrices (as in
the block matrix above), we must be careful to preserve the multiplication order.
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Uses

The determinant will be an essential tool to identify the maximum and minimum points
or the saddle points of a function with multiple variables.

1- Reminder - Definition and components of a matrix

A matrix is a rectangular table of form

An1 Amz  *° Omn

A matrix is said to be of dimension m X n when it has m rows and n columns. This
method of describing the size of a matrix is necessary in order to avoid all confusion

Page 1sur9



between two matrices containing the same amount of entries. For example, a matrix of
dimension 3 X 4 has 3 rows and 4 columns. It would be distinct from a matrix 4 X 3,
that has 4 rows and 3 columns, even if it also has 12 entries. A matrix is said to be
square when it has the same number of rows and columns.

The elements are matrix entries a;;, that are identified by their position. The element
as;, would be the entry located on the third row and the second column of matrix A.
This notation is essential in order to distinguish the elements of the matrix. The element
a,3, distinct from as,, is situated on the second row and the third column of the matrix
A.

2- The matrix determinant
A value called the determinant of A, that we denote by
det(A) or |A],
corresponds to every square matrix A. We will avoid the formal definition of the

determinant (that implies notions of permutations) for now and we will concentrate
instead on its calculation.

3- Calculation of the determinant for a 2 X 2 matrix

Let us consider the matrix A of dimension 2 X 2 :
(a11 a12)
a1 4y
The determinant of the matrix A is defined by the relation

a;p  4g

det(4) = |a21 o

| = 11037 — 4109

The result is obtained by multiplying opposite elements and by calculating the
difference between these two products.... a recipe that you will need to remember!
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Example

Given the matrix

The determinant of A is

det(4) = |§ —12|

4- Exercise

Calculate the determinant of the following 2 X 2 matrices :

oz ) b.(5 )
(5 7)) eGP
Solutions: a)-17 b)0 «¢)5 d)11

Before being able to evaluate the determinant of a 3 X 3 matrix (or all other matrices of
a greater dimension), you will first need to learn a few concepts...

5- Definition of a minor

2 1 4
A=<5 2 3)
8 7 3

The minor M;, is the determinant of the matrix obtained by eliminating the first row
and the second column of 4, i.e.

1\/112=|%53 §|=5.3—3.8=15—24:—9

The minor M,, is the determinant of the matrix obtained by eliminating the second row
and the second column of 4, i.e.

M22=|§ §|=2.3—4.8=6—32=—26
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6- Definition of a cofactor

The cofactor, C;;, of a matrix A is defined by the relation

jr
Cij = (D™ My;

You will notice that the cofactor and the minor always have the same numerical value,
with the possible exception of their sign.

2 1 4
A=<5 2 3)
8 7 3

We have already shown that the minor M;, = —9. Thus the corresponding cofactor,
C12; is

Let us again consider the matrix

Ciz = (_1)1+2M12 =-1(-9)=9

The minor M;, and the cofactor C;, are of different signs.
The minor M,, = —26. Its corresponding cofactor C,, is

CZZ = (_1)2+2M22 = 1. (_26) = _26
This time, the minor M,, and the cofactor C,, are identical.
Evaluating the determinant of a 3 X 3 matrix is now possible. We will proceed by
reducing it in a series of 2 X 2 determinants, for which the calculation is much easier.
This process is called an cofactor expansion.

7- Cofactor expansion - a method to calculate the determinant

Given a square matrix A and its cofactors C;;. The determinant is obtained by cofactor
expansion as follows:

e Choose a row or a column of A (if possible, it is faster to choose the row or column
containing the most zeros)...

e Multiply each of the elements a;; of the row (or column) chosen by its
corresponding cofactor, C;;...

e Add these results.
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8- Calculate the determinant for a 3 X 3 matrix

For a 3 X 3 matrix, this would mean that by choosing to make an expansion along the
first row, the determinant would be

detA == allcn + alzclz + a13613

If we had chosen to carry out an expansion along the second column, we would have to
calculate

detA = a12C12 + a22C22 + a32632

While the choice of row or column may differ, the result of the determinant will be the
same, no matter what the choice we have made. Let us verify this with an example.

Example

What is the determinant of matrix A?

Solution
Let us follow the procedure proposed above (cofactor expansion):

e Choose a row or a column of A... For now, let us choose the first row.

e Multiply each of the elements of this row by their corresponding cofactors... The
elements of the first row are a;; = 2,a,, = 1, et a;3 = 3 that we multiply with the
corresponding cofactors, i.e. C;1, C;, et C;3. These are

0 2
Cia = (=DM = 1 _2| =1(0.(=2) — 2.0) = 0
1 2
Cip = (=DM, = (-1) 2 _2| =1(1x(-2)-2%x2)=6
Cps = (=1)*3M,5 = 1 % 8| —1(1x(0)=2x0)=0

Finally, we need to calculate
detA == a12C12 + azzczz + a32632
detA=2X04+6X1+3X0=6
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Let us verify if an expansion along the second column coincides with the previous result.
Note that the choice of the second column is much more effective since the
determinant will be obtained from the calculation

det A = a,,Cq + ay,Cyy + a3,C3;

Two of the three elements of the second column are zero. In effect, a;, = 1,a,, =
0,and a3, = 0. It is thus useless to calculate the cofactors C,, and C;,. The
corresponding cofactor for a,, is

Cio= (DM = (D], 2 [=10x(--2x2) =6

The determinant of A is thus
detA = alzclz + a22C22 + a32C32 = 1 X 6 + 0 X C22 + O X C32 = 6,

which corresponds to the answer obtained by an expansion along the first row.

9- Alternative method to calculate determinants

This second method is in all points equivalent to cofactor expansion but will allow you to
avoid the use of cofactors.

e Allocate a sigh +/— to each element by following the rule: we associate a positive
sign to the position a,; , then we alternate the signs by moving horizontally or
vertically.

e Choose a row or column of A (if possible, it is faster to choose the row or column of
A containing the most number of zeros)...

e Multiply each element of a;; of the row (or column) chosen by its corresponding
minor, i.e. the remaining determinant when we eliminate the row and column in
which a;; is.

e Add or subtract these results according to the sign allocated to the elements during
the first step.

Let us verify that this method will produce the same result as in the previous example:
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Example

Given the matrix A to which we allocate a sign +/— according to the rule stated above.

2t 17 3%
A=11" 0" 2~
2t 0~ 2%

e Let us choose the third column (it is certainly not the best choice since the second
row has the most zeros, but...)

e We then multiply each element by its corresponding minor:
3 o] =3x0=0
2|§ %|=2x(—2)=—4
—2|? |=-2x(-D=2

e Finally, the respective signs of the elements of the third column tell us the
operations to carry out between these values to obtain the determinant:

detA=+0 — (—4) +2 = 6

10- Exercise

Calculate the determinant of the following matrices:

1 3 2 1 0 2
a) (4 1 3) b) <1 3 4)
2 20 0 6 0

3 -2 4 8 -1 9
c) (2 -4 5) d)<3 1 8)
1 8 2 11 0 17

Solutions: a)24 b)-12 «¢)-66 d)O
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11- Determinants of square matrices of dimensions 4x4 and
greater

The methods presented for the case of 3 X 3 matrices remain valid for all greater
dimensions. You must again follow the steps for cofactor expansion:

Given a square matrix A and its cofactors C;;, the determinant is obtained by following a
cofactor expansion as follows:

e Chose a row or column of A (if possible, it is faster to choose the row or column that
contains the most zeros) ...

e Multiply each of the elementsa;; of the row (or column) chosen, by the
corresponding cofactor Cj;...

e Add the results.

We must however mention a distinction. The cofactor associated to the element a;; of a
4 X 4 matrix is the determinant of a 3 X 3 matrix, since it is obtained by eliminating the
i" row and the j" column of A.

Example

Calculate the determinant of matrix A

1 2 10
o 3 1 1
A_—1031
3 1.2 0

It is essential, to reduce the amount of calculations, to choose the row or column that
contains the most zeros (here, the fourth column). We will proceed to a cofactor
expansion along the fourth column, which means that

det A = a14C14 + a24Co4 + a34C34 + A44Cyq

As a4 and ay, are zero, it is useless to find C;, and C4,. The cofactors C,, and C3, will
be necessary...

1 2 1
C24_ = (_1)2+4M24 =1 -1 0 3
3 1 2
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1 2 1
C34 = (—1)3+4M34 = _1 O 3 1
3 1 2

We let the reader verify that C,, = 18 et C3, = —2. Consequently, the determinant of
Ais

det A = a14C14 + a24Co4 + a34C34 + 44 Cys

det A=0XCyy +1X18+ 1% (=2) 4+ 0 X Cyy = 16

Exercise

Show that the determinant of A in the previous example is 16 by a cofactor expansion
along

a) The first row
b) The third column
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The inverse of a matrix

Introduction

In this leaflet we explain what is meant by an inverse matrix and how it is calculated.

1. The inverse of a matrix
The inverse of a square n x n matrix A, is another n x n matrix denoted by A~! such that
AA =ATTA=1

where [ is the n x n identity matrix. That is, multiplying a matrix by its inverse produces
an identity matrix. Not all square matrices have an inverse matrix. If the determinant of the
matrix is zero, then it will not have an inverse, and the matrix is said to be singular. Only
non-singular matrices have inverses.

2. A formula for finding the inverse

Given any non-singular matrix A, its inverse can be found from the formula

where adj A is the adjoint matrix and |A| is the determinant of A. The procedure for finding
the adjoint matrix is given below.

3. Finding the adjoint matrix

The adjoint of a matrix A is found in stages:

(1) Find the transpose of A, which is denoted by A”. The transpose is found by interchanging
the rows and columns of A. So, for example, the first column of A is the first row of the
transposed matrix; the second column of A is the second row of the transposed matrix, and so
on.

(2) The minor of any element is found by covering up the elements in its row and column and
finding the determinant of the remaining matrix. By replacing each element of AT by its minor,
we can write down a matrix of minors of AT,

(3) The cofactor of any element is found by taking its minor and imposing a place sign
according to the following rule

5.5.1 copyright (© Pearson Education Limited, 2000



This means, for example, that to find the cofactor of an element in the first row, second column,
the sign of the minor is changed. On the other hand to find the cofactor of an element in the
second row, second column, the sign of the minor is unaltered. This is equivalent to multiplying
the minor by ‘41" or ‘—1’ depending upon its position. In this way we can form a matrix of
cofactors of AT. This matrix is called the adjoint of A, denoted adj A.

The matrix of cofactors of the transpose of A, is called the adjoint matrix, adj A I

This procedure may seem rather cumbersome, so it is illustrated now by means of an example.

Example
1 -2 0
Find the adjoint, and hence the inverse, of A = 3 1 5
-1 2 3

Solution

Follow the stages outlined above. First find the transpose of A by taking the first column of A
to be the first row of AT, and so on:

1 3 -1

A= —2 1 2

0 5 3
Now find the minor of each element in A”. The minor of the element ‘1’ in the first row, first
column, is obtained by covering up the elements in its row and column to give é g and

finding the determinant of this, which is —7. The minor of the element ‘3" in the second column
of the first row is found by covering up elements in its row and column to give ( _02 g ) which

has determinant —6. We continue in this fashion and form a new matrix by replacing every
element of A” by its minor. Check for yourself that this process gives

-7 —6 —10
matrix of minors of AT = [ 14 3 5
7T 0 7
Then impose the place sign. This results in the matrix of cofactors, that is, the adjoint of A.
-7 6 —10
adjA=1| —14 3 =5
T 0 7

Notice that to complete this last stage, each element in the matrix of minors has been multiplied
by 1 or —1 according to its position.

It is a straightforward matter to show that the determinant of A is 21. Finally

g1 —174 g —150
|A] 21 -0 7
Exercise
1 3 2 -3 6 -7
1. Show that the inverseof | 0 5 1 |is3| -1 2 -1
-1 3 0 5 —6 5

5.5.2 copyright (© Pearson Education Limited, 2000



Linear Algebra lecture 5

Elementary Row Operations
In matrices we are allowed to perform operations of the following types:

1. Interchange two rows in the matrix ( ex. Ri < Rj).
2. Multiply a row by a non-zero constant ( ex. Ri — kRi, where k is constant).
3. Add a multiple of one row to another row (ex.

Ri — Ri + kRj ,where k is constant).

The above three operations are called elementary raw operation (ERO's) on a matrix.
Note that we can perform these operations on columns of the matrices and in this case
they called elementary column operations on a matrix.

Example:

The following table describes how an ERO is performed at each step to produce a
new simpler matrix

3 1 -2 9

A=|11 2 -1 5

-1 4 2 0

1 2 -1 5

R1 & R2 3 1 -2 9

-1 4 2 0
1 2 -1 5
R3 — R3+ R1 31 -2 9
06 1 5

1 2 -1 5

R2 — R2 - 3R1

=

o
(——
-

2 — R2 4 R3

|
|
|

1 z 1 a
0o 1 2 1
0o 11 11



Using row reduction to calculate the inverse and the
determinant of a square matrix

Hayder Kadhim Zghair

1 Inverse of a square matrix
An n x n square matrix A is called invertible if there exists a matrix X such that
AX =XA =1,

where I is the n x n identity matrix. If such matrix X exists, one can show that it is unique.
We call it the inverse of A and denote it by A~! = X, so that

AAT=ATA=1

holds if A1 exists, i.e. if A is invertible. Not all matrices are invertible. If A=1 does not exist,
the matrix A is called singular or noninvertible.
Note that if A is invertible, then the linear algebraic system

Ax=Db

has a unique solution x = A~'b. Indeed, multiplying both sides of Ax = b on the left by A=1,
we obtain

A 'Ax=A""'b.

But A'A =T and Ix = x, so
x=A"'b

The converse is also true, so for a square matrix A,

Ax = Db has a unique solution if and only if A is invertible.

2 Calculating the inverse
To compute A1 if it exists, we need to find a matrix X such that
AX =1 (1)

Linear algebra tells us that if such X exists, then XA = I holds as well, and so X = A~1.



Now observe that solving (1) is equivalent to solving the following linear systems:

AXl =€
AX2 = €3
Ax, = ey,
where x5, 7 = 1,...,n, is the (unknown) jth column of X and e; is the jth column of the

identity matrix I. If there is a unique solution for each x;, we can obtain it by using elementary
row operations to reduce the augmented matrix [ A | e; | as follows:

[Ale] —[T]x].

Instead of doing this for each j, we can row reduce all these systems simultaneously, by attaching
all columns of I (i.e. the whole matrix I) on the right of A in the augmented matrix and
obtaining all columns of X (i.e. the whole inverse matrix) on the right of the identity matrix
in the row-equivalent matrix:
[A[T]—[T[X].

If this procedure works out, i.e. if we are able to convert A to identity using row operations,
then A is invertible and A= = X. If we cannot obtain the identity matrix on the left, i.e. we
get a row of zeroes, then A~ does not exist and A is singular.

Example 1. Find the inverse of

1 2 3
A=12 45
3 56
or show that it does not exist.
Solution:
123|100
form the augmented matrix [ A |I]: 2451010
3561001
1 2 3 10 0]
Rs — 3R, — Ry : 2 4 5 010
| 0 -1 =3 | =3 0 1 |
1 2 3 10 0]
R2—2R1 —>RQ . 0 0 —1 -2 10
| 0 -1 =3 | =3 0 1 |
1 2 3 100
interchange Ry and Rj : 0 -1 -3 -3 0 1
0O 0 —-1] -2 120



S e

1231 0 0
Ry-(—=1), Rs-(—1) 0133 0 —1
0012 -1 0
1 2 3 1 0 0
R2—3R3 —>R2 . 010 -3 3 —1
| 0 0 1 2 —1 0
1 0 3 7 —6 2
Ry — 2Ry — Ry : 010 -3 3 -1
| 0 0 1 2 -1 0
1.0 0 1 -3 2
R —3R; — Ry : 010 -3 3 -1
| 0 0 1 2 -1 0
So
1 -3 2
A?t=| -3 3 -1
2 -1 0
Example 2. Find the inverse of
1 1
A= -2 1 8
1 -2 -7
or show that it does not exist.
Solution:
1 2 1
form the augmented matrix [ A | I]: -2 1 8
1 -2 -7
1 2 1 1 00
R3 - R1 e Rg . —2 1 8 010
0 -4 -8 -1 0 1
1 2 1 1 00
R2 + 2R1 — R2 . 0 5 10 210
0 -4 -8| -1 0 1
1 21 1 0 0
Ry/5, Rs/(—4): 01 2] 2/5 1/5 0
01 2] 1/4 0 —1/4

O O =
O = O
= o O



1 1 1 0 0
R3s — Ry — Ry : 0 2 2/5 1/5 0
00 0| —3/20 —1/5 —1/4

The row of zeroes on the left means we cannot get the identity matrix there, and thus A is

singular (no inverse exists).
Applying this procedure to an arbitrary 2 x 2 matrix

2
1

a b

-l

we obtain (check!)
1 d —b
A7t =
detA [ —c a ] ’

where

detA = ad — be,

provided that detA # 0. Otherwise, the inverse does not exist. In general, it is true that
A s invertible if and only if detA # 0.

You can check that in the Example 2 above detA = 0.

3 Calculating determinants using row reduction

We can also use row reduction to compute large determinants. The idea is to use elementary
row operations to reduce the matrix to an upper (or lower) triangular matrix, using the fact that

Determinant of an upper (lower) triangular or diagonal matriz equals the product of its
diagonal entries.

As we row reduce, we need to keep in mind the following properties of the determinants:

1. detA =detAT, so we can apply either row or column operations to get the determinant.

2. If two rows or two columns of A are identical or if A has a row or a column of zeroes,

then detA = 0.

3. If the matrix B is obtained by multiplying a single row or a single column of A by a
number «, then

detB = adetA.

If all n rows (or all columns) of A are multiplied by a to obtain B, then

detB = a"*detA.



4. 1If B is obtained by interchanging two rows of A, then

detB = —detA.

5. If B is obtained by adding a multiple of one row (or column) of A to another, then

detB = detA.

Example: use row reduction to compute the determinant of

2 3 3 1
0 4 3 =3
A=l 1 1 3|7
0 —4 -3 2
Solution:
2 3 3 1
2 -1 -1 -3
Interchange Ry and Rj: detA = — 0 4 3 —-3|

0 -4 -3 2

(note that the determinant changes sign, by property 4 above)

2 3 3 1
0 4 -4 4
fo—ti— ==l 4 3 3|7
0 -4 -3 2
(determinant does not change)
2 3 3 1
0 -4 -4 -4
Rt fs— R ==y 4 3 3|7
0 0 0 -1
(determinant does not change)
2 3 3 1
0 -4 -4 —4
Botfla— R ==y ¢ 4 7|7
0 0 0 -1

(determinant does not change, and we get an upper triangular matrix)

Compute the determinant of the upper triangular matrix: =—-2-(—=4)-(-1)-(-1)=8



4 Homework problems

1. For each of the following matrices, find the inverse or show that it does not exist. In the
latter case, check by calculating the determinant.

1 1 -1 2 10
a)| 2 -1 1 by 0 2 1
1 1 2 00 2
1 -1 -1 2 3 1
2 1 0 -1 2 1
3 -2 1 4 -1 —1

2. Use the method of row reduction to evaluate the following determinants:

14 4 1 1 0 03
01 -2 2 0 1 -2 0
a)lg 3 1 4 bl o 3 93
01 —3 —2 0 -3 3 3



Linear Algebra

System of Linear Equations
A linear equation in variables x4, x5, ..., X,, IS an equation of the form
a;xq,AzX3, ..., , Xy, = b

where a4, a,, ..., a, and b are constant real or complex numbers. The constant a; is
called the coefficient of x; ; and b is called the constant term of the equation.

A system of linear equations (or linear system) is a finite collection of linear equations
in samevariables. For instance, a linear system of m equations in n variables
X1,X2, ..., X, Can be written as

ai1X1 A12Xo alnxn - b1
alel a22x2 aann == bz (*)
Am1X1 AmaXy e AmpXn = by

A solution of a linear system (*) is a tuple (s, s5, ..., s,,) of numbers that makes each
equation a true statement when the values s, s, ..., s,are substituted for x4, x5, ..., X,
respectively. The set of all solutions of a linear system is called the solution set of the
system.

Theorem 1.1. Any system of linear equations has one of the following exclusive
conclusions.

(a) No solution.

(b) Unique solution.

(c) Infinitely many solutions.

N

Ly

FIGURE 1
(a) Unique solution (b) Infinitely many solutions (c) No solution

A linear system is said to be consistent if it has at least one solution; and is said to be
inconsistent if it has no solution.

We can represent the general system (*) by using matrices as AX = B where A is
called the coefficients matrix, X is called the variables vector and B is called the
constant vector. Therefore the general system (*) can be rewrite as follows



Linear Algebra

ai; Q12 ° AQip] [*1 b,

az1 az2 Aan | |X2| _ | by | .
: . : =1 -]

An1  Am2 " Amnl [ Xn bm

a1 A2 0 Qqp X1 b,

azy az; Aon X3 b
A=| . : ; X=|.]land B = :2

Am1  Am2° Amn Xn bm

a;;  Qagp A1n b,

a a a b
[4:B] = :21 22 2n 2

Am1 Amz Qmp ¢ by

System of linear equations and matrices

It is impractical to solve more complicated linear systems by hand. Computers and
calculators now have built in routines to solve larger and more complex systems.
Matrices, in conjunction with graphing utilities and or computers are used for solving
more complex systems. In this section, we will develop certain matrix methods for
solving systems of linear equations.

There are many different methods to solve system of linear equations using matrices,
in this section we will discuss some of these methods.

1) Cramer's Rule
This method used to solve square systems (number of equations equals the
number of variables) AX=B and depends on the determinants.

= If det(A)=0, then the system has no solution.

= If det(A) + 0, then the system has a unique solution.

We will explain the method by the following examples
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e Exl. To use Cramer's Rule to solve the systam

331—?32:6

~57) +4r2 = 8,
3 -2 I 6 -2 3 6
,1:[_5 4],:,:[8],,1,:[8 4],”:4,:[_5 5]

where Ay is matrix from A by replacing the first column by b and Az is matrix from
A by replacing the second column by b.
By Cramer’s Rule, we obtain

_ det(Ar) . _ det(Aa)
= 3et(A) =20, and 7, = act(A) =27

We can try another example with a 3 x 3 matrix:
e Ex2. To use Cramer's Rule to solve the systean
zy—2r2+ 3= 0

2r, —8xq= 8
—4zy + 512 + 973 = -9
we Jot
1 -2 | 0 0 -2 1
B=|0 2 -8.b=| 8|.B,=| 8 2 -8{,

-4 5 9 - -9 5 9
1 0 1 1 -2 0
By = 0 8 8|, and By = 0 2 B8
-4 -9 9 -4 5 -9

where B, is matrix from £ by replacing the column ¢ by b.
By Cramer’s Rule, we obtain

i det.(B,) = s dﬁ((ﬂg) .
T Ry R ety T and Ty

 det(By)
T det(B)

Besides solving system equation, we can use Cramer's rule to find the inverse matrix of
a given matrix. Here we see an example:
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2) Elementary raw operations
In this method we will used the elementary raw operations to change the
augmented matrix [A: B] to [I: X]. The following example explains this
method.

Ex: Solve the following system of linear equation using the elementary row

operations.
x—y+z=—-4
2x —3y+4z=-15
5x+y—2z=12
Solution:
1 1 1 -4 1 -1 1|-4
[4:B]= 2 -3 4 |-15 Ry,->-2r+n, 0 -1 2 |-7
5 1 -2| 12 5 1 -2]12
1 -1 1 |-4 1 -1 1 |-4
R; = =51y + 13 0O -1 2 |-7 R, - —n, 0 1 -217
0 6 -7]|32 0 -7132
1 1 1| -4 1 -1 1]-4
R3—>—6T'2+r3 0 1 -2 7 R3—)§T3 0 1 -2 7
0 0 5 [-10 0 1]-2
10 -1/ 3 10 01
Ri-on+n 01 -2|7 Riy->mr3+mr 0 1 -2
00 1]-2 00 1]|-2
1 001 1
R 213 + -
2743 T2 91 0 3 Then the solution iS!y=3
00 1[-2 7=

Homework: Solve the following systems of linear equation using the elementary row
operations.

3x+y+4z=7
2x—3y+z=-8
x+y—2z=1

x+2y—z=3
2x—y+2z2=6
x—3y+3z=4



Gaussian Elimination (30.2

q Introduction

In this Section we will reconsider the Gaussian elimination approach discussed in HELM 8, and we
will see how rounding error can grow if we are not careful in our implementation of the approach. A
method called partial pivoting, which helps stop rounding error from growing, will be introduced.

e revise matrices, especially matrix solution of
equations

Q Prerequisites

Before starting this Section you should ...

e recall Gaussian elimination

e be able to find the inverse of a 2 x 2 matrix

% Learning Outcomes e carry out Gaussian elimination with
partial pivoting
On completion you should be able to ...

12 HELM (2008):
Workbook 30: Introduction to Numerical Methods



1. Gaussian elimination

Recall from HELM 8 that the basic idea with Gaussian (or Gauss) elimination is to replace the matrix of
coefficients with a matrix that is easier to deal with. Usually the nicer matrix is of upper triangular
form which allows us to find the solution by back substitution. For example, suppose we have

T+ 3$2 - 5.7,‘3 = 2
3(131 + 11.1'2 — 9{133 =
—x1 + X9 + 6ZL‘3 = 5

which we can abbreviate using an augmented matrix to

1] 3 —5]2

3 11 =914
-1 1 6|5

We use the boxed element to eliminate any non-zeros below it. This involves the following row
operations

3 —5(2 3 —5] 2
3 11 —9|4| R2—-3xRl =| 0 2 6|—2
-1 1 6|5] R3+RI 04 1| 7

And the next step is to use the to eliminate the non-zero below it. This requires the final row
operation

1 3 -5 2 1 3 —5| 2
0 6|—2 =10 6| —2
0 4 1| 7] R3—-2xR2 0 0 —11| 11

This is the augmented form for an upper triangular system, writing the system in extended form we
have

T+ 3?[72 — 5ZE3 = 2
23?2 + 61)3 = =2
—lzz = 11

which is easy to solve from the bottom up, by back substitution.

HELM (2008): 13
Section 30.2: Gaussian Elimination



Example 5

Solve the system

$1+3$2—5LE3 = 2
2x9 + 613
—1la; = 11

I
|
N

Solution

The bottom equation implies that x3 = —1. The middle equation then gives us that
209 = —2—6r3=—-24+6=14 S Xg =2

and finally, from the top equation,
Ty =2—3r2+513=2—-6—-5=-9.

Therefore the solution to the problem stated at the beginning of this Section is

I -9
i) = 2
xT3 -1

Carry out row operations to reduce the matrix

2 -1 4
4 3 -1
-6 8 =2

into upper triangular form.

Your solution

14 HELM (2008):
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Answer
The row operations required to eliminate the non-zeros below the diagonal in the first column are

as follows

2 -1 4 2 -1 4
4 3 -1 | R2—-2xRl = |0 5 -9
-6 8 —2 | R3+3xR1 0 5 10
Next we use the 5 on the diagonal to eliminate the 5 below it:
2 -1 4 2 -1 4
0 5 -9 =10 5 =9
0 5 10| R3—R2 0 0 19

which is in the required upper triangular form.

2. Partial pivoting

Partial pivoting is a refinement of the Gaussian elimination procedure which helps to prevent the
growth of rounding error.

An example to motivate the idea

Consider the example

R

First of all let us work out the exact answer to this problem

1 104 17171
T -1 2 1
B 1 2 -1 1
Co2x 104411 107 | |1
B 1 1 ~ 1 0.999800...
T 2x104 41| 1+107* | | 0.999900... |-
Now we compare this exact result with the output from Gaussian elimination. Let us suppose, for
sake of argument, that all numbers are rounded to 3 significant figures. Eliminating the one non-zero

element below the diagonal, and remembering that we are only dealing with 3 significant figures, we
obtain

o w5l ]

The bottom equation gives o = 1, and the top equation therefore gives 1 = 0. Something has
gone seriously wrong, for this value for x; is nowhere near the true value 0.9998...found without
rounding. The problem has been caused by using a small number (10~%) to eliminate a number much
larger in magnitude (—1) below it.

The general idea with partial pivoting is to try to avoid using a small number to eliminate much

larger numbers.

HELM (2008): 15
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Suppose we swap the rows

NI

and proceed as normal, still using just 3 significant figures. This time eliminating the non-zero below
the diagonal gives

ERIENE

which leads to 9 = 1 and x; = 1, which is an excellent approximation to the exact values, given
that we are only using 3 significant figures.

Partial pivoting in general

At each step the aim in Gaussian elimination is to use an element on the diagonal to eliminate all
the non-zeros below. In partial pivoting we look at all of these elements (the diagonal and the ones
below) and swap the rows (if necessary) so that the element on the diagonal is not very much smaller
than the other elements.

m Key Point 3

Partial Pivoting

This involves scanning a column from the diagonal down. If the diagonal entry is very much smaller
than any of the others we swap rows. Then we proceed with Gaussian elimination in the usual way.

In practice on a computer we swap rows to ensure that the diagonal entry is always the largest
possible (in magnitude). For calculations we can carry out by hand it is usually only necessary to
worry about partial pivoting if a zero crops up in a place which stops Gaussian elimination working.
Consider this example

1 -3 21 71 —4
2 -6 1 4 | |1
1 23 4 s | T ] 12
0 -1 1 1 7, 0

The first step is to use the 1 in the top left corner to eliminate all the non-zeros below it in the
augmented matrix

1 =3 2 1|-4 1 -3 2 1|—4
2 —6 1 4 1 R2 -2 x R1 0 |0] =3 2 9
-1 2 3 4] 12 R34+ R1 0 —1 5 5 ]
0 -1 1 1] 0 0 —1 1 1| 0

What we would /ike to do now is to use the boxed element to eliminate all the non-zeros below it.
But clearly this is impossible. We need to apply partial pivoting. We look down the column starting

16 HELM (2008):
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at the diagonal entry and see that the two possible candidates for the swap are both equal to —1.
Either will do so let us swap the second and fourth rows to give

1 -3 2 1|-4
0 | -1 1 11 0
0 -1 5 5| 8
0 0 -3 2] 9

That was the partial pivoting step. Now we proceed with Gaussian elimination

=3 2 1]-4 1 -3 2 1|4
0 |—-1| 1 1] 0 [0 -1 110
0 —1 55| 8| p3_po 0O 0 4 4| 8
0 0 -3 2| 9 0 0 =329

The arithmetic is simpler if we cancel a factor of 4 out of the third row to give

1 -3 2 1|4
0O -1 1 1] 0
0O 0 1 1| 2
0O 0 -3 2] 9

And the elimination phase is completed by removing the —3 from the final row as follows

L =3 21 -4 1 -3 2 1|4
0 -1 1.1} 0 0 -1 1 1| 0
0 0 |1] 1] 2 “lo o011] 2
0 0 -3 2| 9| RA+3xR3 0O 0 0 5|15

This system is upper triangular so back substitution can be used now to work out that =, = 3,
T3 =—1, 29 =2and z; = 1.

The Task below is a case in which partial pivoting is required.

[For a large system which can be solved by Gauss elimination see Engineering Example 1 on page
62].

Transform the matrix

1 -2 4
-3 6 —11
4 3 5
into upper triangular form using Gaussian elimination (with partial pivoting when
necessary).
HELM (2008): 17
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Your solution

Answer
The row operations required to eliminate the non-zeros below the diagonal in the first column are
1 -2 4 1 -2 4
-3 6 —11 | R24+3xRl = |0 O 1
4 3 5| R3—4xRI1 0 11 —11

which puts a zero on the diagonal. We are forced to use partial pivoting and swapping the second
and third rows gives

1 -2 4
0 11 -11
0 0 1

which is in the required upper triangular form.

Q Key Point 4

When To Use Partial Pivoting

1. When carrying out Gaussian elimination on a computer, we would usually always swap rows
so that the element on the diagonal is as large (in magnitude) as possible. This helps stop
the growth of rounding error.

2. When doing hand calculations (not involving rounding) there are two reasons we might pivot

(a) If the element on the diagonal is zero, we have to swap rows so as to put a non-zero on
the diagonal.

(b) Sometimes we might swap rows so that there is a “nicer” non-zero number on the
diagonal than there would be without pivoting. For example, if the number on the
diagonal can be arranged to be a 1 then no awkward fractions will be introduced when
we carry out row operations related to Gaussian elimination.

18 HELM (2008):
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Exercises

1. Solve the following system by back substitution

x|+ 21’2 — T3 = 3
51‘2 + 6.733 = =2
71’3 = —14

2. (a) Show that the exact solution of the system of equations
105 1) [ ] [ 2 S —0.99998
-2 4|z ] |10 ro | | 2.00001 |
(b) Working to 3 significant figures, and using Gaussian elimination without pivoting, find an

X1
X2

approximation to . Show that the rounding error causes the approximation to x; to be

a very poor one.

(c) Working to 3 significant figures, and using Gaussian elimination with pivoting, find an
approximation to o

- } . Show that the approximation this time is a good one.
2

3. Carry out row operations (with partial pivoting if necessary) to reduce these matrices to upper
triangular form.

1 -2 4 0 —1 2 -3 10 1
@ | -4 -3 =3, (b 1 -4 2|, (o 1 -3 2
1 13 1 2 5 —4 —2 10 —4

(Hint: before tackling (c) you might like to consider point 2(b) in Key Point 4.)

Answers
1. From the last equation we see that x3 = —2. Using this information in the second equation
gives us xo = 2. Finally, the first equation implies that z; = —3.
-1
a b 1 d —
2. (a) The formula [ e d 1 =7 [ e a } can be used to show that
50000 200005
1 = —— = —0.99998 and To = 2.00001 as required.

50001 = 100002

(b) Carrying out the elimination without pivoting, and rounding to 3 significant figures we
find that x5 = 2.00 and that, therefore, x1 = 0. This is a very poor approximation to x.

(c) To apply partial pivoting we swap the two rows and then eliminate the bottom left element.
Consequently we find that, after rounding the system of equations to 3 significant figures,
x9 = 2.00 and x1 = —1.00. These give excellent agreement with the exact answers.

HELM (2008): 19
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Answers
3.
(a) The row operations required to eliminate the non-zeros below the diagonal in the first
column are as follows
1 -2 4 1 -2 4
—4 -3 -3 | R2+4xRl = |0 —11 13
-1 13 1| R3+1xRI1 0 11 5
Next we use the element in the middle of the matrix to eliminate the value underneath
it. This gives
1 -2 4
0 —11 13 which is of the required upper triangular form.
0 0 18
(b) We must swap the rows to put a non-zero in the top left position (this is the partial
pivoting step). Swapping the first and second rows gives the matrix
1 -4 2
0 -1 2
-2 5 —4
We carry out one row operation to eliminate the non-zero in the bottom left entry as
follows
1 -4 2 1 —4 2
0o -1 2 =10 -1 2
-2 5 —4 | R34+2xRI1 0 -3 0
Next we use the middle element to eliminate the non-zero value underneath it. This
gives
1 -4 2
0o -1 2 which is of the required upper triangular form.
0 0 —6
(c) If we swap the first and second rows of the matrix then we do not have to deal with
fractions. Having done this the row operations required to eliminate the non-zeros below
the diagonal in the first column are as follows
1 -3 2 1 -3 2
-3 10 1| R2+3xRl = |0 1 7
—2 10 -4 | R3+2xR1 0 40
Next we use the element in the middle of the matrix to eliminate the non-zero value
underneath it. This gives
1 -3 2
0 1 7 which is of the required upper triangular form.
0 0 —28
20 HELM (2008):
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Gauss-Jordan Matrix Elimination

-This method can be used to solve systems of linear equations involving two or
more variables. However, the system must be changed to an augmented matrix.

-This method can also be used to find the inverse of a 2x2 matrix or larger matrices, 3x3,
4x4 etc.
Note: The matrix must be a square matrix in order to find its inverse.

An Augmented Matrix is used to solve a system of linear equations.

ax+by+cz=d,
System of Equations——  a,x+b,y+c,z=d,
a,x+byy+c,z=d,

a'l 1

c, [d,
Augmented Matrix ——> a, b, c,j|d,
c,|d

3 3

-When given a system of equations, to write in augmented matrix form, the
coefficients of each variable must be taken and put in a matrix.

For example, for the following system:

3X+2y-z=3
X—-y+2z=4
2X+3y—-z=3
3 2 —13
Augmented Matrix —> 1 -1 24
2 3 -13
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-There are three different operations known as Elementary Row Operations used when
solving or reducing a matrix, using Gauss-Jordan elimination method.

1. Interchanging two rows.

2. Add one row to another row, or multiply one row first and then adding it
to another.

3. Multiplying a row by any constant greater than zero.

Identity Matrix-is the final result obtained when a matrix is reduced. This matrix
consists of ones in the diagonal starting with the first number.

-The numbers in the last column are the answers to the system

of equations.
1 0 of3
0 1 0f2|<«—Identity Matrix for a 3x3
_O 0 15
1 0 0 of2
01 0 ol i )
0 0 1 <—— Identity Matrix for a 4x4
_0 0 0 1|4

-The pattern continues for bigger matrices.
Solving a system using Gauss-Jordan

—The best way to go is to get the ones first in their respective column, and then
using that one to get the zeros in that column.

-It is very important to understand that there is no exact procedure to follow when
using the Gauss-Jordan method to solve for a system.

3IX+2y—-z=3
X—y+2z=4 Write as an augmented matrix.
2x+3y—-z=3
\2
3 2 —13
I —1 24| Switchrow 1 with row 2 togetalin the first column
2 3 13
\!
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1 -1 2|4
3 2 —1|3| Multiply row 1 by -3 and add to row 2 to get a zero
2

3 13
Row 1 multiplied by -3 —— -3 3 -6 -12
Row 2 —— + 3 2 -1 3
New Row 2 —— 0 5 -7 -9

-Put the new row 2 in the matrix, note that though row 1 was multiplied by -3,
row 1 didn’t change in our matrix.

1 -1 24
0 5 -7-9
2 3 1|3

Using a similar procedure of multiplying and adding rows, obtain the following matrix

I -1 2 | 4
0 5 —-7|-9| Multiply row 1 by -2 and add to row3 as above.
2 3 -1]3
J
1 -1 2[4
0 5 —7|-9| Switch rows 2 and 3 to obtain the following
0 5 -5|-5
\2
1 -1 2[4
0 S5 —5|-5| Divide the second row by 5 to obtain a 1 in the second row.
0 5 -7-9]
\!
1 -1 2[4 ]
0 1 —1I|-1|Addrow2torowl
0O 5 -71-9
J
1 0 13
0 1 —1}{—1]| Multiply and add like we did earlier, -5 * R2+R3
0 5 -7|-9
\2
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0 113
1 —1|—1| Divide row 3 by -2 to obtain a 1 in the third row.
0 -2|-4
\2
10 13
—1(-1
0 12

-Finally, the matrix can be solved in two different ways:
A. Using the 1 in column 3, obtain the other zeros and the solutions.

10 of
0 1 Oft| x=1 y=1 z=2
0 0 12

B. Solve by using back substitution.

-The solution to the last row is z = 2, the answer can be substituted into the equation
produced by the second row. y —z =—1 Substituting into this equation, it

simplifies to:

y-2=-1
y=1
-Again, substituting the answer for z into the first equation will give the answer for x.
X+z2=3
X+2=3
Xx=1
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Vector Spaces

L S

4.1 Vectorsin A

4.2 Vector Spaces

4.3 Subspaces of Vector Spaces

4.4 Spanning Sets and Linear Independence

4.5 Basis and Dimension

4.6 Rank of a Matrix and Systems of Linear Equations
4.7 Coordinates and Change of Basis

4.8 Applications of Vector Spaces
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4.1 Vectorsin R’

- An ordered r-tuple :

a sequence of n7real numbers (X, X,, -+, X.)

» R’-space :
the set of all ordered r-tuples

n=1

R'-space = set of all real numbers
(R*-space can be represented geometrically by the x-axis)

R’-space = set of all ordered pair of real numbers (X;, X,)
(Rz—space can be represented geometrically by the xy~plane)

R’-space = set of all ordered triple of real numbers (X;, X,, X3)
(Rg-space can be represented geometrically by the xyz-space)

R'-space = set of all ordered quadruple of real numbers (X, X, X3, X4)
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= Notes:

(1) An rrtuple (x,,X,,---,x.) can be viewed as a point in &’

with the x;/’s as its coordinates

(2) An n-tuple (x, x,,--+,x.) also can be viewed as a vector
X = (X, X,, -, X ) in A" with the x’s as its components

» EXC

a point

v

or

00)

(%, %,)

a vector

v

»& A vector on the plane is expressed geometrically by a directed line segment
whose initial point is the origin and whose terminal point is the point (x;, X;)
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u=(u,U,,U,), v=(¥,v,,-=,V,) (two vectorsin R
= Equality:
u=v ifandonlyif u,=v, u,=v,, ---, U =V,

= Vector addition (the sum of u and v):
U+v=_(U+V,U, +V,, -, U, +V_)

= Scalar multiplication (the scalar multiple of u by ¢):
cu = (cu,,cu,,---,cu, )

= Notes:
The sum of two vectors and the scalar multiple of a vector
in /" are called the standard operations in ~/”

4.4



= Difference between u and v:
u-v=u+(-1)v=_U,-v, U,—V,, Uy—V,,..., U —V_)

= Zero vector
0=(0,0,..,0)

4.5



= Notes:

A vector u=(u,,u,,...,u.) In R" can be viewed as:
\

Use comma to separate components

a 1xnrow matrix (row vector): u=[u,u, --- u,]

Use blank space to separate entries -

or u,

a 7x1 column matrix (column vector): u=

»< Therefore, the operations of matrix addition and scalar multiplication
generate the same results as the corresponding vector operations (see the
next slide)
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Vector addition Scalar multiplication
U+V=_U,Uy, -, U)+(V,V,,--+,V,)  cu=c(uy, Uy, U)

= (U, +V,U, +V,,--+,U +V) = (cu,,cu,, -+, cu,)

Regarded as 1x/7row matrix
U-I—V=[U1 u, - un]+[V1 vV, "'Vn] Cu:c[uluz...un]

:[u1+v1 u, +v, - un+vn] :[c;u1 cu, .- cun]

Regarded as /x1 column matrix

U Vi U +V; _Ul ] _cul ]

u vV u, +V u cu
u+v=| |+ 2= %7 cu=c| “|=|.°

_un_ _Vn_ _un +Vn_ _un_ _Cun_
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-Properties of vector addition and scalar multiplication
Let u, v, and w be vectors in /£, and let cand o be scalars
(1) u+v is a vector in &’ (closure under vector addition)
(2) u+V = v+U (commutative property of vector addition)
(3) (u+v)+w = u+(v+Ww) (associative property of vector addition)
(4) u+0 = U (additive identity property)

. — cps - (Note that —u is just the notation of the additive inverse
(5) u+(—u) = 0 (additive inverse property) of U, and —u = (_1)u will be proved next)

(6) cu is a vector in A’ (closure under scalar multiplication)
(7) a(u+Vv) = cu+cv (distributive property of scalar multiplication over vector
addition)

(8) (c+a) u = cu+al (distributive property of scalar multiplication over real-
number addition)

(9) c¢(du) = (ca)u (associative property of multiplication)
(10) 1(u) = U (multiplicative identity property)
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« Ex 5: Practice standard vector operations in /*
Letu=(2,-1,5,0),v=(4,3,1,-1),andw =(-6, 2, 0, 3) be
vectors in /. Solve x in each of the following cases.

(a) X =2u — (v + 3w)
(b) 3(X+w) = 2U — V+X

Sol: (a) x=2u—(v+3w)
=2Uu+ (-1)(v +3w)
=2U—-V—-3w
=(4, —-2,10, 0)—(4, 3,1, -1)—(-18, 6, 0, 9)
=(4-4+18, -2-3-6, 10-1-0, 0+1-9)
=(18, -11, 9, -8)
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(b) 3(x+w)=2u—V+X
3X+3W =2U—V+X
3X—X=2U—-V—3wW
2X=2U—V—-3wW
X=U—-2V—-3W
= (2-15,0)+(-2,2,%.,4)+(9,-3.0,%)
=(9.4.4-4)

12!2!
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= Notes:
(1) The zero vector 0 in /£ is called the additive identity in /"

(2) The vector —u is called the additive inverse of u

« (Properties of additive identity and additive inverse)

Let v be a vector in #"and ¢be a scalar. Then the following
properties are true

(1) The additive identity is unique, i.e., If v+u =v, u must be 0

(2) The additive inverse of v is unique, I.e., if v+u = 0, u must be —v
(3)0v=0

(4) 0=0

(5) If ev=0, eitherc=0o0rv=0

(6) (-v)=vVv 4.11



. Linear combination (524+ % &) in /A"

The vector x is called a linear combination of v,,v,,...,v,,
If it can be expressed in the form

X=CV, +CV,+---+C.V_,wWherec, C,,..., c, are real numbers

= EX 6:

Givenx =(-1,-2,-2),u=(0,1,4),v=(-1,1,2), and
w=(3,1,2) in &, find 4, b, and csuch that x = au + & + cw.
Sol:

-b + 3¢ = -1
a + b + ¢ = -2
4a + 2b + 2¢ = -2

—a=1 b=-2, ¢c=-1

Thus Xx=u-2v-w 412



4.2 Vector Spaces

= Vector spaces

Let Vbe a set on which two operations (addition and scalar
multiplication) are defined. If the following ten axioms are
satisfied for every element u, v, and w In Vand every scalar (real
number) cand @ then Vs called a vector space, and the
elements in Vare called vectors

Addition:

(1) utvisin V

(2) u+v=v+u

(3) ut(v+w) = (u+v)+w

(4) V'has a zero vector O such that for every uin V, u+0 =u

(5) For every u In V, there is a vector in Vdenoted by —u
such that u+(—u) =0
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Scalar multiplication:
(6) cuisin V
(7) c(u+v)=cu+cv

(8) (c+d)u=cu+du
(9) c(du)=(cd)u
(10) 1(u) =u
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= Notes:

A vector space consists of four entities:

a set of vectors, a set of real-number scalars, and two operations

V. nonempty set of vectors
c. any scalar

+(U, V) =u+ Vv : vector addition

«(c,u) =cu: scalar multiplication
(v, + ) Iscalleda vector space

> The set Vtogether with the definitions of vector addition and scalar
multiplication satisfying the above ten axioms is called a vector space
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= Four examples of vector spaces are shown as follows.

(1) ntuple space: R’
(U, Uy,---u,) + (v, vy, --V,) = (U +V,, U, +V,,---U, +V, )(standard vector addition)
k(Ul, U,,--- Un) = (kUl, kU2 EER kun) (standard scalar multiplication for vectors)

(2) Matrix space): V=M_._
(the set of all mxn matrices with real-number entries)

ExX:(m=n=2)

ull u12 Vll V12 ull T Vll u12 T VlZ
+ = (standard matrix addition)

u21 l"122 V21 V22 u21 T V21 u22 + V22

12 kull ku12

U
11 T :
— (standard scalar multiplication for matrices)

u
K
Uy Uy Ku,,  Kku,,
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(3) n-th degree or less polynomial space: V =P,
(the set of all real-valued polynomials of degree 770r less)

n (standard polynomial

p(X) -I—C](X) — (ao "‘bo) + (a1 +b1)X+- T (an +bn)x addition)

_ L n (standard scalar multiplication for
kp(x) =ka, +ka,x+---+ka, X Tolynomials)

»< By the fact that the set of real numbers is closed under addition and
multiplication, it is straightforward to show that £, satisfies the ten axioms
and thus is a vector space

(4) Continuous function space :V = C (-0, )
(the set of all real-valued continuous functions defined on the
entire real line)
(f+9)(x)=f(X)+g(X) (standard addition for functions)

(kf )(X) = kf (X) (standard scalar multiplication for functions)

>< By the fact that the sum of two continuous function is continuous and the
product of a scalar and a continuous function is still a continuous
function, C(—w, ) is a vector space
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= Summary of important vector spaces
R =set of all real numbers

R* =set of all ordered pairs
R® =set of all ordered triples

R" =set of all n-tuples
C(—o0, ) = set of all continuous functions defined on the real number line
Cla,b] =set of all continuous functions defined on a closed interval [a, b]
P =set of all polynomials
P =set of all polynomials of degree <n
M., , =set of mxn matrices

M, , =set of nxn square matrices
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- Notes: To show that a set is not a vector space, you need
only find one axiom that is not satisfied

« EX 6: The set of all integers Is not a vector space

T 1€V, and 3 is areal-number scalar

(1)@ =1¢V (itisnot closed under scalar multiplication)

TT 1

scalar; noninteger
integer

- Ex7:The set of all (exact) second-degree polynomial functions is
not a vector space

Pf:  Let p(X)=x*and q(x)=-x*+x+1
= p(X)+q(x) =x+1eV

(it is not closed under vector addition)
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« EX8:
V=R?=the set of all ordered pairs of real numbers

vector addition: (u;,u,)+(v,,V,) = (U, +Vv,,u, +V,)
scalar multiplication: c(u,,u,) = (cu,,0) (nonstandard definition)
Verify Vis not a vector space

Sol:

This kind of setting can satisfy the first nine axioms of the
definition of a vector space (you can try to show that), but it
violates the tenth axiom

10D =1L0)= (11
-+ the set (together with the two given operations) Is
not a vector space
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4.3 Subspaces of Vector Spaces

= Subspace
V,+,-): avector space

WO

: a honempty subset of V/
WcV

(W,+,-) . The nonempty subset Wis called a subspace if Wis
a vector space under the operations of vector
addition and scalar multiplication defined on V

= Trivial subspace
»Every vector space V/ has at least two subspaces

(1) Zero vector space {0} is a subspace of Vit satisfies the ten axioms)
(2) Vs asubspace of V

>< Any subspaces other than these two are called proper (or nontrivial) subspaces
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= Examination of whether W being a subspace

- Since the vector operations defined on //are the same as
those defined on V, and most of the ten axioms inherit the
properties for the vector operations, it is not needed to verify
those axioms

- To identify that a nonempty subset of a vector space Is a
subspace, it Is sufficient to test only the closure conditions
under vector addition and scalar multiplication

= Test whether a nonempty subset being a subspace

If Wis a nonempty subset of a vector space V, then W is
a subspace of Vif and only if the following conditions hold

(1) Ifuandvarein W, then u+v isin W
(2) Ifuisin Wand cis any scalar, then cu is in W 4.22



= EX 2: A subspace of M,.,
Let Whe the set of all 2x2 symmetric matrices. Show that

Wis a subspace of the vector space M, ,, with the standard
operations of matrix addition and scalar multiplication

Sol:
First, we knon that W, the set of all 2x2 symmetric matrices,

IS an nonempty subset of the vector space M.,

Second,
AeWAcW=(A+A) =A'+A =A+A (A+A eW)
ceR, AeW = (cA)' =cA’ =TCA (CAeW)

The definition of a symmetric matrix Ais that A7 = A

Thus, Thm. 4.5 is applied to obtain that W Is a subspace of M,_, ,,;



« EX 3: The set of singular matrices is not a subspace of M, ,
Let W be the set of singular (noninvertible) matrices of
order 2. Show that Wis not a subspace of M, , with the
standard matrix operations

Sol:

1 0 0 0
A= EW, B = cW
o o2 1)

cA+B= {é (])J = | ¢W (Wisnotclosed under vector addition)

-.W is not a subspace of M.,
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= Ex 4: The set of first-quadrant vectors is not a subspace of /7
Show that W ={(x;, x,) : x, > 0and x, > 0} , with the standard
operations, is not a subspace of /*

Sol:
Letu=(1, 1) eW
c(-u=(-1)11)=(-1-1)eW

(Wis not closed under scalar multiplication)

-.W is not a subspace of R*
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= Ex 6: Identify subspaces of 7
Which of the following two subsets is a subspace of /2
(a) The set of points on the line givenby x + 2y = 0
(b) The set of points on the line given by x + 2y =1

Sol:
(Note: the zero vector
(&) W= {(X’ y) | X+2y= O}: {(_Zt’t) [te R} (0,0) is on this line)

Letv, =(-2t,t)eW and v, =(-2t,,t,) eW

V4V, = (_2 (t1 +1, ) 4 -|-t2) =W (closed under vector addition)

Cv, = (—Z(Ctl) : ctl) eW (closed under scalar multiplication)

-.W is a subspace of R’
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(b) W ={(X,y) | x+2y =1} (Note: the zero vector (0, 0) is not on this line)
Consider v=(1,0) eW

- (-1)v=(-10)egW ..W is not a subspace of R’
. Notes: Subspaces of &

(1) W consists of the single point 0 = (O, O) (trivial subspace)

(2) W consists of all points on a line passing through the origin
(3) R (trivial subspace)

W = all points on a line
passing through the origin
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= Ex 8: Identify subspaces of 7’
Which of the following subsets is a subspace of R*?
(@ W ={(x,%,,1) | X,X, € R} (Note: the zero vector is not in 1)

(b) W= {(Xl, X, + X3, X3) \ X1 X3 € R} (Note: the zero vector is in W)

Sol:
(a)
i | Consider v=(0,0,1) eW
e - (-1)v=(0,0,-1) ¢W
@ ~.W is not a subspace of R?
il >
// . ' \K‘\ \
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(b)

The origin lies T

in the plane.

Consider v = (v, Vv, +V,,V,) €W and u = (u,,u, +U,,u,) eW
VAU = (VAU (VU )+ (VU ), Uy ) €W

cv =(cv, (e, ) +(cv, ), cv, ) eW
-.W is closed under vector addition and scalar multiplication,

so W is a subspace of R®
4.29



. Notes: Subspaces of A

(1) W consists of the single point 0 :(0,0,0) (trivial subspace)
(2) W consists of all points on a line passing through the origin

(3) W consists of all points on a plane passing through the origin
(The W in problem (b) is a plane passing through the origin)

(4) R® (trivial subspace)

»< According to Ex. 6 and Ex. 8, we can infer that if Wis a subspace of a
vector space V, then both Wand V' must contain the same zero vector O
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= Note: The intersection of two subspaces is a subspace

If V and W are both subspaces of a vector space U,
then the intersection of V and W (denoted by V nW)
IS also a subspace of U

However, the union of two subspaces is not a subspace. Prove
that
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Chapter 7

!'_ Eigenvalues and Eigenvectors

7.1 Eigenvalues and Eigenvectors

7.2 Diagonalization

7.3 Symmetric Matrices and Orthogonal Diagonalization
7.4 Application of Eigenvalues and Eigenvectors

7.5 Principal Component Analysis
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7.1 Eigenvalues and Eigenvectors

= Eigenvalue problem (one of the most important problems in the
linear algebra):

If Ais an mxnmatrix, do there exist nonzero vectors X in /”

such that Ax is a scalar multiple of x?

(The term eigenvalue is from the German word Ei/genwert, meaning
“proper value™)

= Eigenvalue and Eigenvector:

A an nxnmatrix
A: a scalar (could be zero) 2<¢ Geometric Interpretation

X: a nonzero vector in A’ N
AX = AX

Eigenvalue

AX = AX
| | >

Eigenvector




= EX 1. Verifying eigenvalues and eigenvectors

B 2 0 « — 1 “ — 0
o -1 "t ol * |1
Eigenvalue )
1 %
2 0|1 2 1
AX, = =| |=2| |=2X,
o Silo)lol2o
I
Eigenvector
Eigenvalue
|2 0][0]_[0 _‘10_(1))(
o -1f|1| [-1| 1| ;

I
Eigenvector

In fact, for each eigenvalue, it
has infinitely many eigenvectors.
For A=2,[30]7or[50]"are
both corresponding eigenvectors.
Moreover, ([30]+[50])7 is still
an eigenvector. The proof is in
Thm. 7.1.
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- Thm. 7.1: The eigenspace corresponding to A of matrix A

If Ais an nxnmatrix with an eigenvalue A, then the set of all
eigenvectors of A together with the zero vector is a subspace
of A”. This subspace is called the eigenspace of A
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= EX 3: Examples of eigenspaces on the xy~plane

For the matrix A as follows, the corresponding eigenvalues
are 4,=-1and 4,=1:

-1 0
A —
o
Sol:

For the eigenvalue 4, =—1, corresponding vectors are any vectors on the x-axis

X -1 O X —X X | 2% Thus, the eigenspace
A = = corresponding to A =—1 is the x-
0 0 1]|0 0 0 axis, which is a subspace of ~

For the eigenvalue 4, =1, corresponding vectors are any vectors on the y-axis

0 -1 0] 1|0 0 0 >% Thus, the eigenspace
A = 0 1 = corresponding to A =1 is the )~
y y y y axis, which is a subspace of ~
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> Geometrically speaking, multiplying a vector (x, J) in &~ by the matrix A
corresponds to a reflection to the y~axis, i.e., left multiplying A to v can
transform v to another vector in the same vector space

AL,
SHREH

(—xg) (0.3)10.3) (xy)
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« Thm. 7.2: Finding eigenvalues and eigenvectors of a matrix Ae M,,_,
Let Abe an /< matrix.

(1) An eigenvalue of A is a scalar A such that det(11 —A) =0
(2) The eigenvectors of A corresponding to A are the nonzero
solutions of (A1 —A)x=0
= Note: follwing the definition of the eigenvalue problem
AX=AX = Ax=AIX = (Al — A)x=0 (homogeneous system)

(A1 — A)x =0 has nonzero solutions for x iff det(1l —A)=0
(The above Iff results comes from the equivalent conditions on Slide 4.101)

= Characteristic equation of A:
det(1l1 —A)=0

« Characteristic polynomial of Ae M,
det(Al — A) =|(Al —A)|=A"+c A" +---+CA+C,
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= EX 4: Finding eigenvalues and eigenvectors

2 -12
A=

Sol: Characteristic equation:

A-2 12
det(Al — A) =
-1 A+5
=1 +31+2=(A+)(1+2)=0
=>A=-1-2

Eigenvalue: 4, =-1 4, =-2
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O A=-1 = —A)X{_S 1ZWHO}

—

-1 4 || X, 0

__3 12 G.-J. E. 1 _4
1 4 1o o

AR

(2) A, =2 :(EZI—A)XZ{—Ar 12}{&}:{0}
-1 3| % 0

-4 12 cae |1 =3
13 oo

—

el o
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= EX 5: Finding eigenvalues and eigenvectors

Find the eigenvalues and corresponding eigenvectors for
the matrix A. What is the dimension of the eigenspace of
each eigenvalue?

A=|0
0 0 2

N
o

Sol: Characteristic equation:
A-2 -1 0
[Al-Al=| 0 2-2 0 =(1-2)°=0
0 0 A1-2
Eigenvalue: 1 =2
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The eigenspace of 1= 2:

0 -1 0} x 0
(A1 -A)x={0 0 O x,|=|0
0 0 0)x;]| (O]
x| [s] [1] [O]
X, |[=]0|=s/0[+t0| s,t=0
X | [t] |0 |1

1 0
18| 0 [+t] O ||s,t € R}:theeigenspace of Acorrespondingto A =2
0 1

. - - - - J

Thus, the dimension of its eigenspace Is 2
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