
Information Networks Department Logic Design

1st class Dr. Rasim Azeez

1

Number Systems

1.1 Introduction

Many number systems are used, such as decimal, binary, octal, hexadecimal,

etc. All people are using the decimal system daily. So that, the most common used

system is the decimal number system. The other number systems are used in digital

systems applications. The feature which distinguishes one system from another is the

number of digits which are used, and this is called the base (radix) of the system.

These systems are classified according to the radix of the number system as shown

below:

Base name of number system digits used in system

 2 Binary 0, 1

 8 Octal 0, 1, 2, 3, 4, 5, 6, 7

10 Decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

16 Hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

In general, quantities are represented as:

N= a-1 r
-1

 + a-2 r
-2

 + ….+ a0 r
0
 + a1 r

1
 + a2 r

2
 + ….+ an r

n

Where each coefficient a, can take any value of the number system digits and r is the

base of the number system.

A decimal number system uses 10 digits to represent any quantity. The thousands,

hundreds, etc., are powers of 10 implied by the position of the coefficients (symbols)

in the number. The digit in the right is called Least Significant Digit (LSD), and the

digit in the left is called Most Significant Digit (MSD).

…. 10
4
 10

3
 10

2
 10

1
 10

0
 . 10

-1
 10

-2
 10

-3
 …..

…. 10000 1000 100 10 1 .

….

Example:

Binary Number: the decimal number can be represented in binary by arranging the 1

and 0 under weight of the binary system to get the decimal number. Each digit in

binary number called a Bit. The bit in the right is called Least Significant Bit (LSB),

and the bit in the left is called Most Significant Bit (MSB). The positional weight of

each bit is a power of 2.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

2

…. 2
4
 2

3
 2

2
 2

1
 2

0
 . 2

-1
 2

-2
 2

-3
 …..

…. 16 8 4 2 1 .

….

Example:

Octal Number: the decimal number can be present in Octal by arranging basic digits

according to the octal system to get the decimal number where the system uses only 8

digits to represent any quantity. The positional weight of each digit is a power of 8.

…. 8
4
 8

3
 8

2
 8

1
 8

0
 . 8

-1
 8

-2
 8

-3
 …..

…. 4096 512 64 8 1 .

….

Example:

The hexadecimal number system is used commonly by designers to represent

long strings of bits in the addresses, instructions, and data in digital systems. This

system uses 16 digits to represent any quantity. The positional weight of each digit is a

power of 16.

…. 16
4
 16

3
 16

2
 16

1
 16

0
 . 16

-1
 16

-2
 16

-3
 …..

…. 65536 4096 256 16 1 .

….

Example:

1.2 Number Base Conversion

Representations of a number in a different radix are said to be equivalent if

they have the same decimal representation. It is often required to convert a number in a

particular number system to any other number system, e.g., it may be required to

convert a decimal number to binary or octal or hexadecimal. The reverse is also true,

i.e., a binary number may be converted into decimal and so on.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

3

1.2.1 Decimal number-to-other number systems Conversion

The conversion process of a decimal number into any number system can be

done according to the following steps:

1- Separate the integer part and the fraction part.

2- Divide the integer part by the required base until the quotient of zero is

obtained.

3- The column of the remainder is read from bottom to top.

4- Multiplied the fraction part with the required base until zero fraction is

obtained

5- The column of integer part of result is read from top to bottom.

1.2.1.1 Decimal to binary conversion

The above steps will be applied with the base of 2.

Example. Convert (34.25)10 into an equivalent binary number

Solution: the integer part is 34 and can be converted as follows:

Division Quotient Remainder

 17 0 LSB

 8 1

 4 0

 2 0

 1 0

 0 1 MSB

The fraction part is 0.25 and it can be converted as follows:

Multiplication result integer part of result

 0.5 0 MSB

 1.0 1 LSB

Hence the converted binary number is (100010.01)2.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

4

1.2.1.2 Decimal-to-octal Conversion

Similarly, the same steps are used with the base of 8.

Example. Convert (35.3125)10 into an octal number.

Solution: the integer part is 35 which can be converted as follows

Division Quotient Remainder

 4 3 LSD

 0 4 MSD

The fraction part is 0.3125 and it can be converted as follows:

Multiplication Result integer part of result

 2.5 2 MSD

 4.0 4 LSD

Hence the converted octal number is (43.24)8.

1.2.1.3 Decimal-to-hexadecimal Conversion

The same steps are repeated with the base of 16.

Example. Convert (34.3)10 into a hexadecimal number.

Solution: the integer part is 34 which can be converted as follows

Division Quotient Remainder

 2 2 LSD

 0 2 MSD

The fraction part is 0.3 and it can be converted as follows:

Multiplication Result integer part of result

 4.8 4 MSD

 12.8 12

 12.8 12 LSD

This is cyclic number

Hence the converted hexadecimal number is (22.4CC)16.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

5

1.2.2 Conversion from any number system to decimal system

The conversion process from any number system to decimal system depends

on the summation of the multiplied digits by the positional weight of that system.

1.2.2.1 Binary-to-decimal Conversion

Each of the digits in the number systems discussed above has a positional

weight as in the case of the decimal system in which it is a power of 2 for binary

system.

Example. Convert (10101.01)2 into a decimal number.

Solution.

Hence the converted decimal number is (21.25)10.

1.2.2.2 Octal-to-decimal Conversion

The positional weight of each digit in octal number is a power of 8.

Example. Convert (162.35)8 into an equivalent decimal number.

Solution.

Hence the converted decimal number is (114.453125)10.

1.2.2.3 Hexadecimal-to-decimal Conversion

The positional weight of each digit in hexadecimal number is a power of 16.

Example. Convert (3CD.F9)16 into an equivalent decimal number.

Solution.

Hence the converted decimal number is (973.97265625)10.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

6

1.2.3 Conversion from Octal to Binary Number and Vice Versa

The conversion from octal to binary is performed by converting each octal digit

to its three-bits binary equivalent. The eight possible digits are converted as indicated

in this table.

Example. Convert (3.74)8 into an equivalent binary number.

Solution: by converting each digit into binary of three bits group.

 3.74

 011 . 111 100

Hence the equivalent binary number is (011.111100)2.

Converting from binary to octal is simply the reverse of the foregoing process.

The bits of the binary number are grouped into groups of three bits starting from the

LSB for integer part and starting from MSB for fraction part. Sometimes the binary

number will not have even groups of three bits. For those cases, we can add one or two

0s to the left of the MSB for integer part and to the right of the LSB for fraction part.

Example: convert (11101.01)2 into an equivalent octal number.

Solution:

Hence the equivalent octal number is (35.2)8.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

7

1.2.4Conversion from Hexadecimal to Binary Number and Vice Versa

The conversion from hexadecimal to binary is performed by converting each

hexa digit to its four-bits binary equivalent. The sixteen possible digits are converted

as indicated in this table.

Hexa 0 1 2 3 4 5 6 7 8 9 A B C D E F

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Example. Convert (A5.C)16 into an equivalent binary number.

Solution: by converting each digit into binary of four bits group.

 A5.C

 1010 0101 . 1100

Hence, the equivalent binary number is (10100101.1100)2.

Converting from binary to hexa is simply the reverse of the foregoing process.

The bits of the binary number are grouped into groups of four bits starting from the

LSB for integer part and starting from MSB for fraction part. Sometimes the binary

number will not have even groups of four bits. For those cases, we can add one, two or

three 0s to the left of the MSB for integer part and to the right of the LSB for fraction

part.

Example: Convert (10110.01)2 into an equivalent hexadecimal number.

Solution:

Hence the equivalent hexa number is (16.4)16.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

8

1.2.5 Conversion from an Octal to Hexadecimal and Vice Versa

Conversion from octal to hexadecimal and vice versa is sometimes required.

To convert an octal number into a hexadecimal number the following steps are to be

followed:

(i) First convert the octal number to its binary equivalent (as already discussed above).

(ii) Then form groups of 4 bits, starting from the LSB.

(iii) Then write the equivalent hexadecimal number for each group of 4 bits.

Example: convert (26.2)8 into hexadecimal.

Example: convert (16.4)16 into octal.

Solution:

 ⏟ ⏟ ⏟

 ⏞ ⏞ ⏞

 ⏟ ⏟ ⏟

 ⏞ ⏞ ⏞

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

9

1.3 Complement:

Complements are used in digital computers to simplify the subtraction

operation and for logical manipulation. There are two types of complements for each

base‐r system: the radix complement and the diminished radix complement. The first

is referred to as the r’s complement and the second as the (r - 1)’s complement.

1.3.1 Binary numbers Complement:

1- One's (first) Complement:

1's complement= r
n
 – N-1

where n : number of bits

 N: binary number

 r : system base

Simply the 1’s complement of binary number is the number we get by changing each

bit (0 to 1) and (1 to 0).

Example: the first complement of (101100)2

Solution:

 binary number 101100

 1’s complement 010011

2- The Two's (second) Complement:

The equation is:

 2's complement = r
n
 – N

 Simply the 2's complement is equal to 1's complement added by one.

Example: find the 2's complement of (101101)2

Solution:

 binary number 101101

 1’s complement 010010

 2’s complement 010010 + 1 = 010011

1.4 Binary Arithmetic Operations

1- Addition:-

 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 0 carry 1

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

01

Example: Add the two binary numbers (001) and (100)

 0 0 1
 + 1 0 0
 1 0 1
Example: Add the two binary numbers (111) and (001)

 1 1 1
 + 0 0 1
 1 0 0 0

2- Subtraction:-

 0 - 0 = 0
 0 - 1 = 1 borrow 1
 1 - 0 = 1
 1 - 1 = 0

Example: subtract the binary number (100) from (101)

 Solution:

 1 0 1
 - 1 0 0
 0 0 1
Example: subtract the binary number (1101) from (1110)

 Solution:

 1 1 1 0
 - 1 1 0 1
 0 0 0 1

Subtraction Using 1's Complement:

Add M to 1's complement of N (subtracted) and check the carry: If an end

carry occur, add 1 to the least significant bit. And if an end carry does not occur, take

the 1's complement of the number obtained in step 1 and place a negative sign in front.

1

1

10

0

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

00

Example: Given the two binary numbers X = 1010100 and Y = 1000011, perform the

subtraction (a) X - Y and (b) Y - X by using 1’s complements.

Solution:

Subtraction Using 2's Complement:

Apply the 2's complement to the subtracted N and then add it to M, if an end

carry occur, discard it. If an end carry does not occur, apply 2's complement on the

number that obtained in step 1.

Example: Given the two binary numbers X = 1010100 and Y = 1000011, perform the

subtraction (a) X - Y and (b) Y - X by using 2’s complements

Solution:

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

01

3- Multiplication:

Example: Multiply the two binary numbers (111)2 and (101)2.

 111

 101
 111
 0000
 11100
 100011

4- Division

 Binary division is again similar to its decimal counterpart:

Example: divide the number (11011) on (101)

 1 0 1

 1 0 1 1 1 0 0 1

 − 1 0 1

 0 0 1 0 1

 − 1 0 1

 0 0 0

1.5 Binary Codes

The electronic digital systems like computers, microprocessors etc., are

required to process data which may include numbers, alphabets or special characters.

The binary system of representation is the most extensively used one in digital systems

i.e, digital data is represented, stored and processed as group of binary digits (bits).

Hence the numerals, alphabets, special characters and control functions are to be

converted into binary format. The process of conversion into binary format is known

as binary coding. Several binary codes have developed over the years. Some of them

are discussed in this section.

1. Binary coded decimal (BCD).

2. Gray code.

3. ASCII code

http://en.wikipedia.org/wiki/Division_(mathematics)

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

02

1- Binary Coded Decimal (BCD)

 Internally, digital computers operate on binary numbers. When interfacing to

humans, digital processors, e.g. pocket calculators, communication is decimal-based.

 Input is done in decimal then converted to binary for internal processing. For output,

the result has to be converted from its internal binary representation to a decimal form.

 One commonly used code is the Binary Coded Decimal (BCD) code which

corresponds to the first 10 binary representations of the decimal digits 0-9. The BCD

code requires 4 bits to represent the 10 decimal digits. Since 4 bits may have up to 16

different binary combinations, a total of 6 combinations will be unused

Example: Convert (95)10 into BCD code .

Solution:

 95

 1001 0101

2- Gray Code

The Gray code consists of 16 4-bit code words to represent the decimal

Numbers 0 to 15. For Gray code, successive code words differ by only one bit from

one to the next as shown in the table and further illustrated in the Figure.

Binary Number to Gray Code Conversion:

The procedures of conversion from binary to gray code are:

1- put down the MSB

2- start from the MSB, adding without carry each two adjacent bits

Example: convert the (10110)2 into gray code.

Solution:

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

03

Gray Code to Binary Number Conversion:

The procedure of conversion from gray code to binary are:

1- put down the MSB

2- start from the MSB adding without carry each result binary bit with the

lower gray code bit

Example: convert the (11011)gray into binary.

Solution:

3- ASCII Code

American Standard Codes for Information Interchanging (ASCII) is the most

widely used alphanumeric code. It is pronounced as ‘ASKEE’. This is basically a 7-bit

code and so, it has 2
7
 = 128 possible code groups. The ASCII code can be used to

encode both the lowercase and uppercase characters of the alphabet (52 symbols) and

some special symbols as well, in addition to the 10 decimal digits. This code is used to

exchange the information between input/output device and computers, and stored into

the memory.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

51

Logic Gates

 Introduction:

 The logic gate is the basic building block in digital systems. Logic gates

operate with binary numbers. Gates are therefore referred to as binary logic gates. All

voltages used with logic gates will be either HIGH or LOW. In this lecture, a HIGH

voltage will mean a binary 1. A LOW voltage will mean a binary 0. Remember that

logic gates are electronic circuits. These circuits will respond only to HIGH voltages

(called 1s) or LOW (ground) voltages (called 0s). All digital systems are constructed

by using only three basic logic gates. These basic gates are called the AND gate, the

OR gate, and the NOT gate.

1- The NOT gate:

 a NOT gate is also called an inverter. a NOT gate, or inverter, is an unusual

gate. The NOT gate has only one input and one output. Many symbols can be used for

NOT gate such as: ̅ . Fig(1) illustrates the logic symbol for the NOT gate ,

Boolean expression and the truth table. Boolean expression is a form of symbolic logic

that shows how logic gates operate.

 a) symbol b) Boolean expression c) Truth table

Fig(1). The NOT gate symbol , Boolean expression and truth table

 The input is always changed to its opposite. If the input is 0, the NOT gate will

give its complement, or opposite, which is 1. If the input to the NOT gate is a 1, the

circuit will complement it to give a 0. The double inverted x is equal to the original

x.

𝑭 = 𝒙̅

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

51

 The laws of Boolean algebra govern how NOT gates operate are:

 ̅ = ̅ =

 = ̅ =

 = ̅ =

 ̿ =

 2- The AND gate:

 The AND gate is called the “all or nothing” gate. The standard logic symbol for

the AND gate is drawn in Fig.(2.a). This symbol shows the inputs as x and y. The

output is shown as F. This is the symbol for a 2-input AND gate. The Boolean

expression of this AND gate is shown in Fig.(2.b) . The truth table for the 2-input

AND gate is shown in Fig. (2.c). The inputs are shown as binary digits (bits). Note that

only when both inputs x and y are 1 will the output be 1.

 a) symbol b) Boolean expression c) Truth table

Fig(2) The AND gate symbol , Boolean expression and truth table

The Boolean expression reads x AND y equals the output F. The formal laws for the

AND function are:

 =

 =

 =

 ̅ =

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

51

3- The OR gate:

 The OR gate is called the “any or all” gate. The standard logic symbol for an

OR gate is drawn in Fig (3). The OR gate has two inputs labeled x and y. The output is

labeled F. The shorthand Boolean expression for this OR function is given as x + y =

F. Note that the plus (+) symbol means OR in Boolean algebra. The expression (x + y

= F) is read as x OR y equals output F. You will note that the plus sign does not mean

to add as it does in regular algebra.

 a) symbol b) Boolean expression c) Truth table

Fig(3) The OR gate symbol , Boolean expression and truth table

The formal laws for the OR function are:

 =

 =

 =

 ̅ =

4-The NAND gate :

 This is implemented from the AND gate with NOT gate , so that it is the

complement of the AND gate.

 The NAND gate symbol, Boolean expression and truth table are shown in

fig(4).

a) symbol b) Boolean expression c) Truth table

Fig(4) The NAND gate symbol , Boolean expression and truth table

𝑭 = 𝒙𝒚

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

51

5- The NOR gate :

 This is implemented from the OR gate with NOT gate , so that it is the

complement of the OR gate.

 The NOR gate symbol, Boolean expression and truth table are shown in fig(5).

 a) symbol b) Boolean expression c) Truth table

Fig(5) The NOR gate symbol , Boolean expression and truth table

6- The Exclusive OR (XOR) gate :

 This is implemented from the (OR, NOT, AND) gates , as you can see it's

Boolean expression. The XOR gate symbol, Boolean expression and truth table are

shown in fig(6).

 a) symbol b) Boolean expression c) Truth table

Fig(6) The XOR gate symbol , Boolean expression and truth table

7- The Exclusive NOR (XNOR) gate :

 This is the complement of the XOR gate . The XNOR gate symbol,

Boolean expression and truth table are shown in fig(7).

a) symbol b) Boolean expression c) Truth table

Fig(7). The XNOR gate symbol , Boolean expression and truth table

𝑭 = 𝒙 𝒚

𝑭 = 𝒙 ⨁𝒚

 = 𝒙𝒚̅ 𝒙̅𝒚

𝑭 = 𝒙 ⨀𝒚

 = 𝒙𝒚 𝒙 ̅ 𝒚̅

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

51

The summery of all logic gates is shown in fig(8)

Fig (8) . The logic gates summary

𝑭 = 𝒙̅

𝑭 = 𝒙𝒚

𝑭 = 𝒙 𝒚

𝑭 = 𝒙 ⨁𝒚

 = 𝒙𝒚̅ 𝒙̅𝒚

𝑭 = 𝒙 ⨀𝒚

 = 𝒙𝒚 𝒙 ̅ 𝒚̅

NOT

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

02

 Universality of NAND & NOR Gates

 It is possible to implement any logic expression using only NAND gates and

no other type of gate. This is because NAND gates, in the proper combination, can be

used to perform each of the Boolean operations OR, AND, and NOT.

 In a similar manner, it can be shown that NOR gates can be arranged to

implement any of the Boolean operations.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

12

Boolean Algebra

In 1854 George Boole introduced a systematic approach of logic and

developed an algebraic system to treat the logic functions, which is now called

Boolean algebra. In 1938 C.E. Shannon developed a two-valued Boolean algebra

called Switching algebra, and demonstrated that the properties of two-valued or

bistable electrical switching circuits can be represented by this algebra.

Boolean algebra is a mathematical system for the manipulation of variables

that can have one of two values. In digital systems, these values are “on” and “off,” 1

and 0, or “high” and “low.”

 The following Huntington postulates are satisfied for the definition of Boolean

algebra on a set of elements S together with two binary operators (+) and (.).

1. (a) Closer with respect to the operator (+).

 (b) Closer with respect to the operator (.).

2. (a) An identity element with respect to + is designated by 0 i.e., x + 0 = 0 + x = x.

(b) An identity element with respect to . is designated by 1 i.e., x.1 = 1. x= x.

 Two-Valued Boolean Algebra

Two-valued Boolean algebra is defined on a set of only two elements, S =

{0,1}, with rules for two binary operators (+) and (.) and inversion or complement as

shown in the following operator tables, respectively.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

11

The basic rules of Boolean algebra are:-

The proving of theorems can be done by using the Postulates or the truth table as

illustrated in the following :

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

12

Example: prove that x(y + z)= xy + xz

Solution:

x y z y + z x(y + z) xy xz xy + xz

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1

Hence, it is proved because the left side is similar to the right side

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

13

Example: prove that x + yz = (x+y)(x + z)

Solution:

x y z yz x + yz x + y x + z (x+y)(x+z)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1

Hence, it is proved because the left side is similar to the right side

Operator Precedence

The operator precedence for evaluating Boolean expressions is (1) parentheses,

(2) NOT, (3) AND, and (4) OR. In other words, expressions inside parentheses must

be evaluated before all other operations. The next operation that holds precedence is

the complement, and then follows the AND and, finally, the OR.

Boolean Function

 A Boolean function is a relation between the binary inputs and the binary

outputs. The value of a function (output) may be 0 or 1, depending on the values of

inputs present in the Boolean function. Boolean Function can be described by:

1- a truth table

2- Boolean equation,

3- a logic diagram

1- Truth table

Truth table for a function is a list of all combinations of 1’s and 0’s that can

be assigned to the binary variables and a list that shows the value of the function

for each binary combination.

For n variables, there are rows (states)

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

14

For example, when the number of variables (inputs) n=3, then the number

of rows (states) = = 8 as shown in this table:

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

2- Boolean equation (Boolean function form):

Boolean equation consists of a binary variable identifying the function (output)

followed by an equal sign and a Boolean expression formed with binary variables, the

two binary operators AND and OR, one unary operator NOT, and parentheses. When

a Boolean expression is implemented with logic gates, each literal in the function is

designated as input to the gate. The literal may be a primed or unprimed variable. For

example, the Boolean equation of the truth table above is:

 ̅ ̅ ̅

Where F is the function (output)

 A, B, C are the input variables (literals)

3- Logic diagram (circuit diagram):

The logic diagram composed of logic gates in which are interconnected by

wires that carry logic signals. The figure below shows the logic diagram of the

Boolean equation

 ̅ ̅ ̅

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

15

Example: Write the Boolean expression for the logic diagram shown.

Solution:

The Boolean expression of this circuit is :

 ̅

Simplification using Boolean algebra:

 Minimization of the number of literals and the number of terms leads to less

complex circuits as well as less number of gates, which should be a designer’s aim.

There are several methods to minimize the Boolean function such as Boolean algebra

and Karnaugh map (K-Map). Here, simplification or minimization of complex

algebraic expressions will be shown with the help of postulates and theorems of

Boolean algebra.

 Example : Simplify the following Boolean expression.

 ̅ ̅

Solution:

 ̅ ̅

 ̅

 ̅

𝑥𝑦

𝑧

 𝑥𝑦 𝑧

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

16

Example : Simplify the following Boolean expression.

 ̅ ̅

Solution:

 ̅ ̅

 ̅ ̅

 ̅

 ̅

Example: Simplify the following Boolean expression.

 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

Solution: using De Morgan theorem

 ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̿

 ̿ ̅

 ̅

Example: simplify and draw the logic diagram of

 ̅̅ ̅̅ ̅

Solution:

 ̅̅ ̅̅ ̅

 ̅

 ̅ ̅

 ̅ ̅

 ̅

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

17

Example : Draw the Boolean expression

 ̅

a) using basic logic gates.

b) using NOR gates only.

Solution :

a)

b)

Information Networks department Logic Design

1st class Dr. Rasim Azeez

1

Boolean Function Forms

We will get four Boolean product terms by combining two variables (literals) x

and y with logical AND operation. These Boolean product terms are called

as Minterms or product terms. The minterms are ̅ ̅ ̅ ̅ .

Similarly, we will get four Boolean sum terms by combining two variables x and y

with logical OR operation. These Boolean sumterms are called as Maxterms or sum

terms. The Maxterms are ̅ ̅ ̅ ̅ .

The following table shows the representation of Minterms and Maxterms for 2

variables.

x y Minterms Maxterms

0 0 ̅ ̅

0 1 ̅ ̅

1 0 ̅ ̅

1 1 ̅ ̅

If the binary variable is ‘0’, then it is represented as complement of variable in

Minterm and as the variable itself in Maxterm. Similarly, if the binary variable is ‘1’,

then it is represented as complement of variable in Maxterm and as the variable itself

in Minterm.

a) Canonical forms

A truth table consists of a set of inputs and outputs. If there are ‘n’ input variables,

then there will be 2
n
 possible combinations with zeros and ones. So the value of each

output variable depends on the combination of input variables. So, each output

variable will have ‘1’ for some combination of input variables and ‘0’ for some other

combination of input variables. Therefore, we can express each output variable in

following two ways.

1- Canonical sum of product (SoP) form

2- Canonical product of sum (PoS) form

Information Networks department Logic Design

1st class Dr. Rasim Azeez

2

1- Canonical SoP form

Canonical SoP form means Canonical Sum of Products form. In this form, each

product term contains all literals. So, these product terms are nothing but the

minterms. Hence, canonical SoP form is also called as sum of Minterms form.

a- identify the minterms for which, the output variable is one

b- do the logical OR of those minterms in order to get the Boolean

expression function corresponding to that output variable.

Example: Drive the canonical SoP form from the following truth table

Inputs Output

A B C F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Here, the output F is ‘1’ for five combinations of inputs. The corresponding Minterms

are ̅ ̅ ̅ ̅ ̅ ̅ ̅ . By doing logical OR of these five minterms, we will

get the Boolean function of output F.

Therefore, the Boolean function of output is,

 ̅ ̅ ̅ ̅ ̅ ̅ ̅

 This is the canonical SoP form of output,F. We can also represent this function in

following two notations.

F(A,B,C) = m0+ m3+ m4+ m6+ m7

 () ∑()

𝑨̅𝑩̅𝑪̅

𝑨̅𝑩𝑪

𝑨𝑩̅𝑪̅

𝑨𝑩𝑪̅

𝑨𝑩𝑪

Information Networks department Logic Design

1st class Dr. Rasim Azeez

3

2- Canonical PoS form

 In this form, each sum term contains all literals. So, these sum terms are

nothing but the Maxterms. Hence, canonical PoS form is also called as product of

Maxterms form.

a- identify the Maxterms for which, the output variable is zero

b- do the logical AND of those Maxterms in order to get the Boolean

expression function corresponding to that output variable.

Example: Drive the canonical PoS form from the following truth table

Inputs Output

A B C F

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Here, the output F is ‘0’ for three combinations of inputs. The corresponding

maxterms are ̅ ̅ ̅ ̅ . By doing logical AND of these

three maxterms, we will get the Boolean function of output F.

Therefore, the Boolean function of output is,

 (̅)(̅)(̅ ̅)

This is the canonical PoS form of output, F. We can also represent this function in

following two notations.

 F(A, B, C) = M1. M2. M5

 () ∏()

Note: the sequence of literals(letters) must be the same in truth table and in Boolean

equation.

𝑨 𝑩 𝑪̅

𝑨 𝑩̅ 𝑪

𝑨̅ 𝑩 𝑪̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

4

b) Standard forms

We discussed two canonical forms of representing the Boolean outputs. Similarly,

there are two standard forms of representing the Boolean outputs. These are the

simplified version of canonical forms.

 Standard SoP form: such as ̅ ̅ ̅

 Standard PoS form: such as ()()(̅)

 The main advantage of standard forms is that the number of inputs applied to logic

gates can be minimized. Sometimes, there will be reduction in the total number of

logic gates required.

Conversion from Canonical SoP form to Standard SoP form

 In this form, each product term need not contain all literals. So, the product

terms may or may not be the Minterms. Therefore, the Standard SoP form is the

simplified form of canonical SoP form.

We will get Standard SoP form of output variable in two steps.

 Get the canonical SoP form of output variable

 Simplify the above Boolean function, which is in canonical SoP form.

Sometimes, it may not possible to simplify the canonical SoP form. In that case, both

canonical and standard SoP forms are same.

Example: convert the canonical SoP expression to standard SoP form

 ̅ ̅ ̅ ̅

Solution:

 ̅ ̅ ̅ ̅

 ̅ ̅ ̅ (̅)
 ̅ ̅ ̅ because ̅

Hence the standard SoP expression of the given function is

 ̅ ̅ ̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

5

Conversion from standard SoP form to canonical SoP form

The canonical SoP form of a logic function can be obtained by using the following

procedure:

1) Check each term in the given logic function. Retain if it is a minterm, continue

to examine the next term in the same manner.

2) Examine for the variables that are missing in each product which is not a min

term. If the missing variable in the minterm is X, multiply that minterm with

(X+X′).

3) Multiply all the products and discard the redundant terms.

Example. Obtain the canonical SoP form of the following function:

F (A, B) = A + B

Solution. The given function contains two variables A and B. The variable B is

missing from the first term of the expression and the variable A is missing from

the second term of the expression. Therefore, the first term is to be multiplied by

(̅) and the second term is to be multiplied by (̅) as demonstrated

below.

 ()

 (̅) (̅)
 ̅ ̅

 ̅ ̅

Hence the canonical SoP expression of the given function is

 () ̅ ̅

Example. Obtain the canonical sum of product form of the following function.

F (A, B, C) = A + BC

Solution. Here neither the first term nor the second term is Minterm. The given

function contains three variables A, B, and C. The variables B and C are missing

from the first term of the expression and the variable A is missing from the second

term of the expression. Therefore, the first term is to be multiplied by (̅) and

(̅) . The second term is to be multiplied by (̅). This is demonstrated

below.

Information Networks department Logic Design

1st class Dr. Rasim Azeez

6

 ()

 (̅)(̅) (̅)
 (̅)(̅) ̅

 ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅ ̅

Hence the canonical SoP expression of the given function is

 () ̅ ̅ ̅ ̅ ̅

Conversion from standard PoS form to canonical PoS form

The canonical product of sums form of a logic function can be obtained by

using the following procedure.

1) Check each term in the given logic function. Retain it if it is a maxterm,

continue to examine the next term in the same manner.

2) Examine for the variables that are missing in each sum term that is not a

maxterm. If the missing variable in the maxterm is X, add that maxterm with

(̅).

3) Expand the expression using the properties and postulates as described earlier

and discard the redundant terms.

Example. Obtain the canonical product of the sum form of the following function.

 () (̅)()

Solution. Now, in the above expression, C is missing from the first term and B is

missing from the second term. Hence ̅ is to be added with the first term and ̅

is to be added with the second term as shown below.

 () (̅)()
 (̅ ̅)(̅)
 (̅)(̅ ̅)()(̅)
 (̅)(̅ ̅)()

Hence the canonical PoS expression for the given function is

 () (̅)(̅ ̅)()

Information Networks department Logic Design

1st class Dr. Rasim Azeez

57

Simplify the Boolean Function using Karnaugh Map

(K-Map)

The second method that used to simplify the Boolean function is the

Karnaugh map. K-map basically deals with the technique of inserting the

values of the output variable in cells within a rectangle or square grid

according to a definite pattern. The number of cells in the K-map is

determined by the number of input variables and is mathematically

expressed as two raised to the power of the number of input variables, i.e.,

2
n
, where the number of input variables is n.

Thus, to simplify a logical expression with two inputs, we require a K-

map with (2
2

= 4) cells. A four-input logical expression would lead to a

(2
4
 = 16) celled-K-map, and so on.

Advantages of K-Maps

1- The K-map simplification technique is simpler and less error-prone

compared to the method of solving the logical expressions using

Boolean laws.

2- It prevents the need to remember each and every Boolean algebraic

theorem.

3- It involves fewer steps than the algebraic minimization technique to

arrive at a simplified expression.

4- K-map simplification technique always results in minimum

expression if carried out properly.

Disadvantages of K-Maps

1- As the number of variables in the logical expression increases, the

K-map simplification process becomes complicated.

2- The minimum logical expression arrived by using the K-map

simplification procedure may or may not be unique depending on

the choices made while forming the groups

Information Networks department Logic Design

1st class Dr. Rasim Azeez

58

K-mapping & Minimization Steps

Step 1: generate K-map based on the number of input variables n

Step 2: group all adjacent 1s without including any 0s. All groups must be

rectangular and contain a “power-of-2” number of 1s 1, 2, 4, 8, 16, 32, …

Step 3: define product terms using variables common to all minterms in

group

Step 4: sum all essential groups plus a minimal set of remaining groups to

obtain a minimum SOP.

1- Two variables K-Map

Number of input variables are 2

Hence the number of squares = 2
n
= 2

2
= 4

Inputs
A B

Decimal
equivalent

Minterms Output
F

0 0 0 m0 ̅ ̅

0 1 1 m1 ̅
1 0 2 m2 ̅

1 1 3 m3

And K-Map of two variables is:

 ̅
0

 1

 ̅
0

 0

 1

1

 2 3

Information Networks department Logic Design

1st class Dr. Rasim Azeez

59

Example: simplify the Boolean expression by using K-Map

 ̅

Solution:

Number of input variables are 2

Hence the number of squares = 2
n
= 2

2
= 4

 ̅
0

 1

 ̅
0

 0

 1

1

 2 3

Example: simplify the Boolean expression by using K-Map

 ∑

Solution:

Number of input variables are 2

Hence the number of squares = 2
n
= 2

2
= 4

 ̅
0

 1

 ̅
0

 0

 1

1

 2 3

 ̅

1

1

1

1

1

0

0

0

Information Networks department Logic Design

1st class Dr. Rasim Azeez

5:

Example: simplify the Boolean expression by using K-Map

 ̅ ̅ ̅

Solution:

Number of input variables are 2

Hence the number of squares = 2
n
= 2

2
= 4

 ̅
0

 1

 ̅
0

 0

 1

1

 2 3

 ̅

Example: simplify the Boolean expression by using K-Map

 ∑

Solution:

Number of input variables are 2

Hence the number of squares = 2
n
= 2

2
= 4

 ̅
0

 1

 ̅
0

 0

 1

1

 2 3

 ∑ ̅ ̅

1

1

1 1

0 0

0

0

Information Networks department Logic Design

1st class Dr. Rasim Azeez

5;

2- Three Variables K-Map

Number of input variables are 3

Hence the number of squares = 2
n
= 2

3
= 8

The truth table is

Inputs
A B C

Decimal
equivalent

Minterms Output
F

0 0 0 0 m0 ̅ ̅ ̅
0 0 1 1 m1 ̅ ̅

0 1 0 2 m2 ̅ ̅

0 1 1 3 m3 ̅
1 0 0 4 m4 ̅ ̅

1 0 1 5 m5 ̅
1 1 0 6 m6 ̅

1 1 1 7 m7

And the K-Map of three variables is:

 ̅ ̅
00

 ̅

 01

11

 ̅
10

 ̅
0

 0

 1

 3

 2

1

 4 5 7 6

Information Networks department Logic Design

1st class Dr. Rasim Azeez

64

Example: simplify the Boolean expression by using K-Map

 ̅ ̅ ̅ ̅ ̅ ̅

Solution:

Number of input variables are 3

Hence the number of squares = 2
n
= 2

3
= 8

 ̅ ̅
00

 ̅

 01

11

 ̅
10

 ̅
0

 0

 1

 3

 2

1

 4 5 7 6

 ̅ ̅ ̅

Example: simplify the Boolean expression by using K-Map

 ∑

Solution:

Number of input variables are 3

Hence the number of squares = 2
n
= 2

3
= 8

 ̅ ̅
00

 ̅

 01

11

 ̅
10

 ̅
0

 0

 1

 3

 2

1

 4 5 7 6

 ̅ ̅ ̅

1 1 1

1

1

1

1

0

0 0 0 0

0 0

0 0

Information Networks department Logic Design

1st class Dr. Rasim Azeez

64

3- Four Variables K-map

Number of input variables are 4

Hence the number of squares = 2
n
= 2

4
= 16

The truth table is

Inputs
A B C D

Decimal
equivalent

Minterms Output
F

0 0 0 0 0 m0 ̅ ̅ ̅ ̅

0 0 0 1 1 m1 ̅ ̅ ̅
0 0 1 0 2 m2 ̅ ̅ ̅

0 0 1 1 3 m3 ̅ ̅
0 1 0 0 4 m4 ̅ ̅ ̅

0 1 0 1 5 m5 ̅ ̅

0 1 1 0 6 m6 ̅ ̅
0 1 1 1 7 m7 ̅

1 0 0 0 8 m8 ̅ ̅ ̅
1 0 0 1 9 m9 ̅ ̅

1 0 1 0 10 m10 ̅ ̅

1 0 1 1 11 m11 ̅
1 1 0 0 12 m12 ̅ ̅

1 1 0 1 13 m13 ̅
1 1 1 0 14 m14 ̅

1 1 1 1 15 m15

And the K-Map of four variables is:

 ̅ ̅
00

 ̅
 01

11

 ̅
10

 ̅ ̅
00

 0

 1

 3

 2

 ̅
01

 4 5 7 6

 11

 12 13 15 14

 ̅
10

 8 9 11 10

Information Networks department Logic Design

1st class Dr. Rasim Azeez

64

Example: simplify the Boolean expression by using K-Map

 ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

Solution: Number of input variables are 4

Hence the number of squares = 2
n
= 2

4
= 16

 ̅ ̅
00

 ̅
 01

11

 ̅
10

 ̅ ̅
00

 0

 1

 3

 2

 ̅
01

 4 5 7 6

 11

 12 13 15 14

 ̅
10

 8 9 11 10

Example: simplify the Boolean expression by using K-Map

 ∑

Solution: Number of input variables are 4

Hence the number of squares = 2
n
= 2

4
= 16

 ̅ ̅
00

 ̅
 01

11

 ̅
10

 ̅ ̅
00

 0

 1

 3

 2

 ̅
01

 4 5 7 6

 11

 12 13 15 14

 ̅
10

 8 9 11 10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

𝑭 𝑨 𝑩 𝑪 𝑫 𝑩̅𝑫̅ 𝑨̅𝑩𝑪𝑫 𝑨𝑩𝑪̅𝑫

𝑭 𝑨 𝑩 𝑪 𝑫 𝑫̅ 𝑨𝑩𝑪

0

0 0

0 0

0

0

0

0 0

0 0

0 0

0

0 0

Information Networks department Logic Design

1st class Dr. Rasim Azeez

65

K-Map with Don’t Care Conditions

 In certain cases some of the minterms may never occur or it may

not matter what happens if they do

– In such cases we fill in the Karnaugh map with an X that meaning

don't care

– When minimizing an X is like a "joker"

• X can be 0 or 1 - whatever helps best with the minimization

Example: simplify the Boolean expression by using K-Map

 ∑ ∑

Solution: Number of input variables are 4

Hence the number of squares = 2
n
= 2

4
= 16

 ̅ ̅
00

 ̅
 01

11

 ̅
10

 ̅ ̅
00

 0

 1

 3

 2

 ̅
01

 4 5 7 6

 11

 12 13 15 14

 ̅
10

 8 9 11 10

 ̅ ̅

1

1

1

X

X

X X

1

0

0

0

0

0 0

0 0

Information Networks department Logic Design

1st class Dr. Rasim Azeez

44

Logic Circuits

The digital system consists of two types of circuits, namely

1- Combinational Logic Circuits.

2- Sequential Logic Circuits.

1- Combinational Logic Circuits:

 A combinational circuit consists of logic gates whose outputs at

any time are determined from only the present combination of inputs

without regard to previous inputs or previous state of outputs. The design

of Combinational logic circuit depending on the derivation of the Boolean

expression from the truth table base on sum of product or product of

sum.

Design Procedures using POS are :-

1- Write the truth table for all input states which equal to (2
n
) where

n is the number of inputs.

2- Write the expression for each (Logic 0) output with OR gate

3- Write the overall output expression by AND ing the terms in step 2

and if it is possible Simplify this expression.

 4- Implement this expression using logic gates

Example : Derive the Boolean expression from the following truth table

using POS and draw the logic diagram.

Inputs
B A

Output
Y

0 0 1

0 1 0

1 0 1

1 1 1

Sol: ̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

44

Design Procedures using SOP are :-

1- Write the truth table for all input states which equal to (2
n
) where

n is the number of inputs.

2- Write the expression for each (Logic 1) output with AND gate

3- Write the overall output expression by OR ing the terms in step 2

and if it is possible Simplify this expression.

 4- Implement this expression using logic gates

Example: Design a logic circuit that has 3 inputs and gives a (logic 1)

output when the binary input value less than or equal 2.

Sol: number of inputs =3 ; number of states = 2
3
 = 8

Inputs
C B A

Output
Y

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

 ̅ ̅ ̅ ̅ ̅ ̅ ̅
 ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅
 ̅ ̅ ̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

44

Common Functions of Combinational Logic
There are many combinational logic circuits or diagrams commonly used

in all logic systems such as:

1- Adders & Subtractors

2- Magnitude Comparators

3- Multiplexer and demultiplexers

4- Decoders and Encoders

Adders

 Arithmetic operations are among the basic functions of a digital

computer. Addition of two binary digits is the most basic arithmetic

operation. The simple addition consists of four possible elementary

operations, which are 0+0 = 0, 0+1 = 1, 1+0 = 1, and 1+1 = 0 with carry

one. The two types of adders are :-

a) Half adder (HA) :

A half adder is a multiple outputs combinational logic circuit which

add two bits of binary data without carry, producing a sum (S)

and a carry out (Co).

 ̅ ̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

44

b) Full adder (FA) :

 A full adder is a multiple outputs combinational logic circuit

which add two bits of binary data with carry input (Ci), producing a

sum (S) and a carry out (Co).

 ̅ ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅ ̅

 ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ̅ ̅ ̅

 ̅ ̅ ̅

Parallel adder :

 How can we add two binary numbers of 4 bits

N A3 A2 A1 A0

M B3 B2 B1 B0 +

 S S4 S3 S2 S1 S0

We need 3 full adders and 1 half adder

Information Networks department Logic Design

1st class Dr. Rasim Azeez

44

Subtractors

Subtraction is the other basic function of arithmetic operations of

information-processing tasks of digital computers. Similar to the addition

function, subtraction of two binary digits consists of four possible

elementary operations, which are 0–0 = 0, 0–1 = 1 with borrow of 1, 1–0

= 1, and 1–1 = 0. There are two types of subtractor

a) Half Subtractor

A half-subtractor has two inputs and two outputs. Let the

input be designated as X and Y respectively, and output functions

be designated as D for difference and B for borrow. The truth table

of the function X-Y is as follows

 ̅ ̅

 ̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

44

b) Full Subtractor

 A combinational circuit of full-subtractor performs the operation of

subtraction of three bits—the minuend, subtrahend, and borrow generated

from the subtraction operation of previous significant digits and produces

the outputs difference and borrow. Let us designate the input variables

minuend as X, subtrahend as Y, and previous borrow as Z, and outputs

difference as D and borrow as B. Eight different input combinations are

possible for three input variables. The truth table of X- Y is shown below

 ̅ ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅ ̅

 ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ̅ ̅ ̅ ̅ ̅

 ̅ ̅ ̅ ̅
 ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

Information Networks department Logic Design

1st class Dr. Rasim Azeez

45

Magnitude Comparator

A magnitude comparator is one of the useful combinational logic

networks and has wide applications. It compares two binary numbers and

determines if one number is greater than, less than, or equal to the other

number. It is a multiple output combinational logic circuit. If two binary

numbers are considered as A and B, the magnitude comparator gives three

outputs for A > B, A < B, and A = B.

Input variables Output Variables

A B A=B A>B A<B

0 0 1 0 0

0 1 0 0 1

1 0 0 1 0

1 1 1 0 0

 ̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 ̅

 ̅

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

15

Multiplexer

 A multiplexer (mux) is a digital system that selects one out of possible 2
n
 inputs

depending on n select bits. For instance, the truth table and schematic symbol for a 2-

to-1 mux are shown below.

symbol of a 2-to-1 mux

And the truth table of (2-to-1) mux is :

The Boolean expression for the output (Y) in terms of inputs A, B and S is:

 ̅ ̅ ̅ ̅

 ̅ ̅ ̅

 ̅

 2 - to – 1 multiplexer

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

15

 Larger multiplexers are also common, if you have 4 inputs then you need 2 select

bits. This is the reason for the n-select bits mapping 2
n
 inputs to one output.

Selectors Inputs Output

X Z D C B A Y

0 0 0 0 0 0 0

0 0 0 0 0 1 1

0 0 0 0 1 0 0

0 0 0 0 1 1 1

0 0 0 1 0 0 0

0 0 0 1 0 1 1

0 0 0 1 1 0 0

0 0 0 1 1 1 1

0 0 1 0 0 0 0

0 0 1 0 0 1 1

0 0 1 0 1 0 0

0 0 1 0 1 1 1

0 0 1 1 0 0 0

0 0 1 1 0 1 1

0 0 1 1 1 0 0

0 0 1 1 1 1 1

0 1 0 0 0 0 0

0 1 0 0 0 1 0

0 1 0 0 1 0 1

0 1 0 0 1 1 1

0 1 0 1 0 0 0

0 1 0 1 0 1 0

0 1 0 1 1 0 1

0 1 0 1 1 1 1

0 1 1 0 0 0 0

0 1 1 0 0 1 0

0 1 1 0 1 0 1

0 1 1 0 1 1 1

0 1 1 1 0 0 0

0 1 1 1 0 1 0

0 1 1 1 1 0 1

0 1 1 1 1 1 1

1 0 0 0 0 0 0

1 0 0 0 0 1 0

1 0 0 0 1 0 0

1 0 0 0 1 1 0

1 0 0 1 0 0 1

1 0 0 1 0 1 1

1 0 0 1 1 0 1

1 0 0 1 1 1 1

1 0 1 0 0 0 0

1 0 1 0 0 1 0

1 0 1 0 1 0 0

1 0 1 0 1 1 0

1 0 1 1 0 0 1

1 0 1 1 0 1 1

1 0 1 1 1 0 1

1 0 1 1 1 1 1

1 1 0 0 0 0 0

1 1 0 0 0 1 0

1 1 0 0 1 0 0

1 1 0 0 1 1 0

1 1 0 1 0 0 0

1 1 0 1 0 1 0

1 1 0 1 1 0 0

1 1 0 1 1 1 0

1 1 1 0 0 0 1

1 1 1 0 0 1 1

1 1 1 0 1 0 1

1 1 1 0 1 1 1

1 1 1 1 0 0 1

1 1 1 1 0 1 1

1 1 1 1 1 0 1

1 1 1 1 1 1 1

𝒀 𝑿̅𝒁̅𝑨 𝑿̅𝒁𝑩 𝑿𝒁̅𝑪 𝑿𝒁𝑫

 4 - to – 1 multiplexer

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

15

Demultiplexer

 A demultiplexer basically reverses the multiplexing function. It is take data

from one line and distribute them to given number of output lines.

The simplest type of demultiplexer is the 1- to- 2 lines DMUX. as shown in Figure

below.

Selector Input Outputs

S Y B A

0 0 0 0

0 1 0 1

1 0 0 0

1 1 1 0

 ̅

1 to 2 Demultiplexer

Figure below shows a one to four line demultiplexer circuit. The input data line goes

to all of the AND gates. The two select lines enable only one gate at a time and the

data appearing on the input line will pass through the selected gate to the associated

output line.

Truth table of 1- to – 4 demultiplexer

 ̅ ̅
 ̅

 ̅

1- to – 4 Demultiplexer

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

45

Decoder

 As its name indicates, a decoder is a circuit component that decodes an input

code. Given a binary code of n-bits, a decoder will tell which code is this out of the 2
n

possible codes (See Figure). Thus, a decoder has n- inputs and 2
n
 outputs. Each of the

2
n
 outputs corresponds to one of the possible 2

n
 input combinations.

In general, output i equals 1 if and only if the input binary code has a value of i.

Example: 2-to-4 decoder
 Let us discuss the operation and combinational circuit design of a decoder by

taking the specific example of a 2-to-4 decoder. It contains two inputs denoted by A

and B and four outputs denoted by D0, D1, D2, and D3 as shown in figure.

As we see in the truth table , for each input combination, one output line is activated,

that is, the output line corresponding to the input combination becomes 1, while other

lines remain inactive. For example, an input of 00 at the input will activate line D0. and

01 at the input will activate line D1, and so on.

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

44

 ̅ ̅

 ̅

 ̅

The logic diagram of 2-to- 4 Decoder

Example: 3-to-8 decoder
It contains three inputs denoted by a, b and c, with eight outputs denoted by

D0, D1, D2, D3, D4, D5, D6 and D7 as shown in figure

𝑫𝟎 𝒄 𝒃̅𝒂̅

𝑫𝟏 𝒄 𝒃̅𝒂

𝑫𝟐 𝒄 𝒃𝒂̅

𝑫𝟑 𝒄 𝒃𝒂

𝑫𝟒 𝒄𝒃̅𝒂̅

𝑫𝟓 𝒄𝒃̅𝒂

𝑫𝟔 𝒄𝒃𝒂̅

𝑫𝟕 𝒄𝒃𝒂

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

45

Encoder

 The encoder is a combinational circuit that performs the reverse operation of

the decoder. The encoder has a maximum of 2
n

inputs and n outputs. Only one input

can be logic 1 at any given time (active input). All other inputs must be 0’s.and the

Output lines generate the binary code corresponding to the active input. The block

diagram of 2
n
 –to-n encoder as shown below .

Example: 4-to-2 Encoder
 The inputs are 4 and the outputs are 2

The block diagram and the truth table of a 4-to-2 encoder are shown below .

So that the logic expression of outputs are:

 A = D1 + D3

 B = D2 + D3

And the logic diagram of 4-to- 2 encoder as shown below:

Information Networks Department Logic Design

1st class Dr. Rasim Azeez

46

Example: 8-to-3 Encoder
 The inputs are 8 and the outputs are 3. The truth table and the logic diagram of a

8-to-3 encoder are shown below.

Binary to Gray / Gray to Binary Conversion:
 The gray code is widely used in many digital systems specially in shaft

encoders and analog to digital conversion, but it is difficult to use the gray-code in

arithmetic operations, since there are only one bit change between two consecutive

gray code number, and it is unweighted code, and the XOR gate is the most suitable

gate for this purpose as shown in Figure below:

𝒂 𝑫𝟏 +𝑫𝟑 +𝑫𝟓 +𝑫𝟕

𝒃 𝑫𝟐 +𝑫𝟑 +𝑫𝟔 +𝑫𝟕

𝒄 𝑫𝟒 +𝑫𝟓 +𝑫𝟔 +𝑫𝟕

