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Number Systems 

1.1 Introduction  

Many number systems are used, such as decimal, binary, octal, hexadecimal, 

etc. All people are using the decimal system daily. So that, the most common used 

system is the decimal number system. The other number systems are used in digital 

systems applications. The feature which distinguishes one system from another is the 

number of digits which are used, and this is called the base (radix) of the system. 

These systems are classified according to the radix of the number system as shown 

below:  

Base              name of number system                                digits used in system       

 2                              Binary                                                          0, 1 

 8                               Octal                                               0, 1, 2, 3, 4, 5, 6, 7 

10                             Decimal                                        0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

16                         Hexadecimal                      0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 

 

In general, quantities are represented as: 

N= a-1 r
-1

 + a-2 r
-2

 + ….+ a0 r 
0
 + a1 r

1
 + a2 r

2
 + ….+ an r

n 

Where each coefficient a, can take any value of the number system digits and r is the 

base of the number system. 

 

A decimal number system uses 10 digits to represent any quantity. The thousands, 

hundreds, etc., are powers of 10 implied by the position of the coefficients (symbols) 

in the number. The digit in the right is called Least Significant Digit (LSD), and the 

digit in the left is called Most Significant Digit (MSD). 
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Example:                                     
 

  
   

 

   
 

 

Binary Number: the decimal number can be represented in binary by arranging the 1 

and 0 under weight of the binary system to get the decimal number. Each digit in 

binary number called a Bit. The bit in the right is called Least Significant Bit (LSB), 

and the bit in the left is called Most Significant Bit (MSB). The positional weight of 

each bit is a power of 2. 
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Example:                                
 

 
   

 

 
 

 

Octal Number: the decimal number can be present in Octal by arranging basic digits 

according to the octal system to get the decimal number where the system uses only 8 

digits to represent any quantity. The positional weight of each digit is a power of 8. 
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Example:                             
 

 
   

 

  
 

 

The hexadecimal number system is used commonly by designers to represent 

long strings of bits in the addresses, instructions, and data in digital systems. This 

system uses 16 digits to represent any quantity. The positional weight of each digit is a 

power of 16. 
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Example:                                  
 

  
    

 

   
 

 

1.2 Number Base Conversion   

Representations of a number in a different radix are said to be equivalent if 

they have the same decimal representation. It is often required to convert a number in a 

particular number system to any other number system, e.g., it may be required to 

convert a decimal number to binary or octal or hexadecimal. The reverse is also true, 

i.e., a binary number may be converted into decimal and so on.  
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1.2.1 Decimal number-to-other number systems Conversion   

The conversion process of a decimal number into any number system can be 

done according to the following steps:  

1- Separate the integer part and the fraction part. 

2- Divide the integer part by the required base until the quotient of zero is 

obtained. 

3- The column of the remainder is read from bottom to top. 

4- Multiplied the fraction part with the required base until zero fraction is 

obtained  

5- The column of integer part of result is read from top to bottom. 

 

1.2.1.1  Decimal to binary conversion 

The above steps will be applied with the base of  2. 

Example. Convert (34.25)10 into an equivalent binary number 

Solution: the integer part is 34 and can be converted as follows: 

 

Division Quotient Remainder  

      17 0 LSB 

      8 1  

     4 0  

     2 0  

     1 0  

     0 1 MSB 

 

The fraction part is 0.25 and it can be converted as follows:                               

Multiplication                           result integer part of result  

           0.5 0 MSB 

         1.0 1 LSB 

 

Hence the converted binary number is (100010.01)2.  
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1.2.1.2 Decimal-to-octal Conversion  

Similarly, the same steps are used with the base of 8.  

Example. Convert (35.3125)10 into an octal number.  

Solution: the integer part is 35 which can be converted as follows 

Division Quotient Remainder  

      4 3 LSD 

     0 4 MSD 

 

The fraction part is 0.3125 and it can be converted as follows:                               

Multiplication                           Result integer part of result  

             2.5 2 MSD 

         4.0 4 LSD 

 

Hence the converted octal number is (43.24)8.  

 

1.2.1.3 Decimal-to-hexadecimal Conversion  

The same steps are repeated with the base of 16.  

Example. Convert (34.3)10 into a hexadecimal number.  

Solution: the integer part is 34 which can be converted as follows 

Division Quotient Remainder  

       2 2 LSD 

      0 2 MSD 

 

The fraction part is 0.3 and it can be converted as follows:                               

 

Multiplication                           Result integer part of result  

           4.8 4 MSD 

          12.8 12  

          12.8 12 LSD 

 

This is cyclic number  

Hence the converted hexadecimal number is (22.4CC)16. 
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1.2.2 Conversion from any number system to decimal system 

The conversion process from any number system to decimal system depends 

on the summation of the multiplied digits by the positional weight of that system. 

 

1.2.2.1 Binary-to-decimal Conversion  

Each of the digits in the number systems discussed above has a positional 

weight as in the case of the decimal system in which it is a power of 2 for binary 

system.  

Example. Convert (10101.01)2 into a decimal number.  

Solution.  

                                      

                                  

       

Hence the converted decimal number is (21.25)10.  

 

1.2.2.2 Octal-to-decimal Conversion  

The positional weight of each digit in octal number is a power of 8.  

Example. Convert (162.35)8 into an equivalent decimal number.  

Solution.  

                            

                
 

 
   

 

  
            

Hence the converted decimal number is (114.453125)10.  

 

1.2.2.3 Hexadecimal-to-decimal Conversion  

The positional weight of each digit in hexadecimal number is a power of 16.  

Example. Convert (3CD.F9)16 into an equivalent decimal number.  

Solution.  

                                    

                     
 

  
   

 

   

              

Hence the converted decimal number is (973.97265625)10.  
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1.2.3 Conversion from Octal to Binary Number and Vice Versa  

The conversion from octal to binary is performed by converting each octal digit 

to its three-bits binary equivalent. The eight possible digits are converted as indicated 

in this table.  

 

 

Example. Convert (3.74)8 into an equivalent binary number.  

Solution: by converting each digit into binary of three bits group. 

 

                         3.74 

 

             011 .     111      100 

Hence the equivalent binary number is (011.111100)2.  

 

Converting from binary to octal is simply the reverse of the foregoing process. 

The bits of the binary number are grouped into groups of three bits starting from the 

LSB for integer part and starting from MSB for fraction part. Sometimes the binary 

number will not have even groups of three bits. For those cases, we can add one or two 

0s to the left of the MSB for integer part and to the right of the LSB for fraction part. 

 

Example: convert (11101.01)2 into an equivalent octal number. 

Solution: 

 

 

Hence the equivalent octal number is (35.2)8.  
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1.2.4Conversion from Hexadecimal to Binary Number and Vice Versa  

The conversion from hexadecimal to binary is performed by converting each 

hexa digit to its four-bits binary equivalent. The sixteen possible digits are converted 

as indicated in this table.  

Hexa 0 1 2 3 4 5 6 7 8 9 A B C D E F 

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

 

Example. Convert (A5.C)16 into an equivalent binary number.  

Solution: by converting each digit into binary of four bits group. 

                        A5.C 

 

            1010     0101 .  1100 

Hence, the equivalent binary number is (10100101.1100)2.  

 

Converting from binary to hexa is simply the reverse of the foregoing process. 

The bits of the binary number are grouped into groups of four bits starting from the 

LSB for integer part and starting from MSB for fraction part. Sometimes the binary 

number will not have even groups of four bits. For those cases, we can add one, two or 

three 0s to the left of the MSB for integer part and to the right of the LSB for fraction 

part. 

 

Example: Convert (10110.01)2 into an equivalent hexadecimal number. 

Solution: 

 

 

Hence the equivalent hexa number is (16.4)16.  
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1.2.5 Conversion from an Octal to Hexadecimal and Vice Versa  

Conversion from octal to hexadecimal and vice versa is sometimes required. 

To convert an octal number into a hexadecimal number the following steps are to be 

followed:  

(i) First convert the octal number to its binary equivalent (as already discussed above).  

(ii) Then form groups of 4 bits, starting from the LSB.  

(iii) Then write the equivalent hexadecimal number for each group of 4 bits.  

 

Example: convert (26.2)8 into hexadecimal. 

 

 

 

 

Example: convert (16.4)16 into octal. 

 

Solution: 

              ⏟               ⏟                       ⏟          

 

          ⏞        ⏞        ⏞        

 

           ⏟       ⏟          ⏟       

         ⏞     ⏞     ⏞     
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1.3 Complement: 

Complements are used in digital computers to simplify the subtraction 

operation and for logical manipulation. There are two types of complements for each 

base‐r system: the radix complement and the diminished radix complement. The first 

is referred to as the r’s complement and the second as the (r - 1)’s complement.  

 

1.3.1  Binary numbers  Complement: 

 

1- One's (first) Complement: 

1's complement= r
n
 – N-1 

where n : number of bits 

                         N:  binary number 

                          r :  system base 

Simply the 1’s complement of binary number is the number we get by changing each 

bit (0 to 1) and (1 to 0). 

Example: the first complement of (101100)2  

Solution: 

            binary number          101100  

            1’s complement        010011 

  

2- The Two's (second) Complement: 

The equation  is: 

  2's complement = r
n
 – N 

 
                Simply the 2's complement is equal to 1's complement added by one. 
 

Example: find the 2's complement of (101101)2 

Solution: 

                binary number          101101  

               1’s complement         010010 

               2’s complement         010010 + 1 =    010011 

 

 

1.4  Binary Arithmetic Operations 

 

1- Addition:- 

 

              0 + 0 = 0 
             0 + 1 = 1 
             1 + 0 = 1 
             1 + 1 = 0        carry 1 
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Example:  Add the two binary numbers  (001) and (100) 

                       0 0 1 
             +    1  0 0 
                    1 0 1 
Example: Add the two binary numbers  (111) and (001) 

 
                      
                 1     1      1 
           +    0     0      1 
              1  0    0      0  

 

 

2- Subtraction:- 

 

               0 - 0 = 0 
               0 - 1 = 1           borrow 1 
               1 - 0 = 1 
               1 - 1 = 0    
 

Example:  subtract  the  binary number  (100)  from  (101) 

    Solution:              

                                             1  0  1 
                               -     1  0  0 
                                     0  0  1 
Example: subtract the binary number  (1101)  from (1110) 

  Solution:  
                  
                 1     1      1    0 
           -     1     1      0    1 
                 0     0       0    1 
 

 

Subtraction Using  1's Complement: 

Add M to 1's complement of N ( subtracted ) and check the carry: If an end 

carry occur, add 1 to the least significant bit. And if an end carry does not occur, take 

the 1's complement of the number obtained in step 1 and place a negative sign in front. 

 

 

 

1

 

1

 

10    

      
0 
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Example: Given the two binary numbers X = 1010100 and Y = 1000011, perform the 

subtraction (a) X - Y and (b) Y - X by using 1’s complements. 

Solution: 

 

 

 

 

Subtraction Using  2's Complement: 

Apply the 2's complement to the subtracted N and then add it to M, if an end 

carry occur, discard it. If an end carry does not occur, apply 2's complement on the 

number that obtained in step 1. 

 

Example: Given the two binary numbers X = 1010100 and Y = 1000011, perform the 

subtraction (a) X - Y and (b) Y - X by using 2’s complements 

Solution:  
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3- Multiplication: 
 
              

      
      
      
      

 
Example:  Multiply the two binary numbers   (111)2 and (101)2. 

 
                                          111 

         101 
           111 
       0000 
       11100    
     100011 
 

4- Division 

              Binary division is again similar to its decimal counterpart:  

Example: divide the number (11011) on (101) 

                   
 
                        1 0 1 

                    

      1 0 1      1 1 0 0 1 

                  − 1 0 1 

                      ----- 

                      0 0 1 0 1 

                  −        1 0 1 

                              ----- 

                              0 0 0 

 

1.5  Binary  Codes 

The electronic digital systems like computers, microprocessors etc., are 

required to process data which may include numbers, alphabets or special characters. 

The binary system of representation is the most extensively used one in digital systems 

i.e, digital data is represented, stored and processed as group of binary digits (bits). 

Hence the numerals, alphabets, special characters and control functions are to be 

converted into binary format. The process of conversion into binary format is known 

as binary coding. Several binary codes have developed over the years. Some of them 

are discussed in this section. 

1.  Binary coded decimal (BCD). 

2.  Gray code. 

3.  ASCII code 

http://en.wikipedia.org/wiki/Division_(mathematics)
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1- Binary Coded Decimal (BCD) 

 Internally, digital computers operate on binary numbers. When interfacing to 

humans, digital processors, e.g. pocket calculators, communication is decimal-based. 

 Input is done in decimal then converted to binary for internal processing.  For output, 

the result has to be converted from its internal binary representation to a decimal form. 

 One commonly used code is the Binary Coded Decimal (BCD) code which 

corresponds to the first 10 binary representations of the decimal digits 0-9. The BCD 

code requires 4 bits to represent the 10 decimal digits. Since 4 bits may have up to 16 

different binary combinations, a total of 6 combinations will be unused 

 

 

Example: Convert (95)10 into BCD code . 

Solution:  

                   

                            95 

 

               1001              0101 

 

2- Gray Code 

The Gray code consists of 16 4-bit code words to represent the decimal 

Numbers 0 to 15. For Gray code, successive code words differ by only one bit from 

one to the next as shown in the table and further illustrated in the Figure. 

 

Binary Number to Gray Code Conversion: 

 

The procedures of conversion from binary to gray code are: 

1- put down the MSB  

2-  start from the MSB, adding without carry each two adjacent bits  

 

Example: convert the (10110)2 into gray code. 

Solution: 
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Gray Code to Binary Number Conversion: 

The procedure of conversion from gray code to binary are: 

1- put down the MSB 

2- start from the MSB adding without carry each result binary bit with the 

lower gray code bit 

 

Example: convert the (11011)gray  into binary. 

Solution: 

 

 

 

 

 

 

3-  ASCII Code 

American Standard Codes for Information Interchanging (ASCII) is the most 

widely used alphanumeric code. It is pronounced as ‘ASKEE’. This is basically a 7-bit 

code and so, it has 2
7
 = 128 possible code groups. The ASCII code can be used to 

encode both the lowercase and uppercase characters of the alphabet (52 symbols) and 

some special symbols as well, in addition to the 10 decimal digits. This code is used to 

exchange the information between input/output device and computers, and stored into 

the memory. 
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Logic Gates 
 

 Introduction: 

            The logic gate is the basic building block in digital systems. Logic gates 

operate with binary numbers. Gates are therefore referred to as binary logic gates. All 

voltages used with logic gates will be either HIGH or LOW. In this lecture, a HIGH 

voltage will mean a binary 1. A LOW voltage will mean a binary 0. Remember that 

logic gates are electronic circuits. These circuits will respond only to HIGH voltages 

(called 1s) or LOW (ground) voltages (called 0s). All digital systems are constructed 

by using only three basic logic gates. These basic gates are called the AND gate, the 

OR gate, and the NOT gate.  
 
 

1- The  NOT  gate: 

             a  NOT gate is also called an inverter. a NOT gate, or inverter, is an unusual 

gate. The NOT gate has only one input and one output. Many symbols can be used for  

NOT gate such as:      ̅        . Fig(1)  illustrates the logic symbol for the NOT gate , 

Boolean expression and the truth table. Boolean expression is a form of symbolic logic 

that shows how logic gates operate. 

 

 
 

                                     a) symbol                  b) Boolean expression         c) Truth table 

 

Fig(1 ). The NOT  gate symbol , Boolean expression and truth table 

 

            The input is always changed to its opposite. If the input is 0, the NOT gate will 

give its complement, or opposite, which is 1. If the input to the NOT gate is a 1, the 

circuit will complement it to give a 0.  The double inverted  x  is equal to the original  

x. 

 

 

 

 

 

𝑭 = 𝒙̅ 
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51 

          The laws of Boolean algebra govern how NOT gates operate are: 

 

 

                    ̅ =                                     ̅ =   

                 =                                     ̅ =   

                 =                                     ̅ =   

                 ̿ =   

                         

 

 

 2- The  AND gate: 

            The AND gate is called the “all or nothing” gate. The standard logic symbol for 

the AND gate is drawn in Fig.(2.a). This symbol shows the inputs as x and y. The 

output is shown as F. This is the symbol for a 2-input AND gate. The Boolean 

expression of this AND gate is shown in Fig.(2.b) . The truth table for the 2-input 

AND gate is shown in Fig. (2.c). The inputs are shown as binary digits (bits). Note that 

only when both inputs x and y are 1 will the output be 1.  

 

 
                                     a) symbol                  b) Boolean expression         c) Truth table 

 

 

Fig(2 ) The AND  gate symbol , Boolean expression and truth table 

 

 

The Boolean expression reads x AND y equals the output F. The formal laws for the 

AND function are: 

   =   

   =   

   =   

   ̅ =   
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3- The  OR gate: 

              The OR gate is called the “any or all” gate.  The standard logic symbol for an 

OR gate is drawn in Fig (3). The OR gate has two inputs labeled x and y. The output is 

labeled F. The shorthand Boolean expression for this OR function is given as x + y = 

F. Note that the plus ( + ) symbol means OR in Boolean algebra. The expression (x + y 

= F) is read as x OR  y equals output F. You will note that the plus sign does not mean 

to add as it does in regular algebra. 

 

 

 
 

                                      a) symbol                  b) Boolean expression         c) Truth table 

 

 

Fig( 3 ) The OR  gate symbol , Boolean expression and truth table 

 

The formal laws for the OR function are: 

   =   

   =   

   =   

   ̅ =   

 

 

4-The NAND gate : 

           This is implemented  from the AND gate with NOT gate , so that it is the 

complement of the AND gate. 

          The NAND gate symbol, Boolean expression and truth table are shown in 

fig(4).  

 

    
a) symbol                  b) Boolean expression         c) Truth table 

 

Fig(4 ) The NAND  gate symbol , Boolean expression and truth table 

 

𝑭 = 𝒙𝒚     
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5- The NOR gate : 

           This is implemented  from the OR gate with NOT gate , so that it is the 

complement of the OR gate. 

          The NOR gate symbol, Boolean expression and truth table are shown in fig(5). 

 

 
                  a) symbol                 b) Boolean expression         c) Truth table 

 

Fig(5 ) The NOR  gate symbol , Boolean expression and truth table 

 

 

6- The Exclusive OR (XOR) gate : 

           This is implemented  from the  (OR,  NOT, AND ) gates , as you can see it's 

Boolean expression. The XOR gate symbol, Boolean expression and truth table are 

shown in fig(6). 

 

 
                  a) symbol                 b) Boolean expression         c) Truth table 

 

Fig(6 ) The XOR  gate symbol , Boolean expression and truth table 

 

 

7- The Exclusive NOR (XNOR) gate : 

           This is the complement of the XOR gate .    The XNOR gate symbol, 

Boolean expression and truth table are shown in fig(7). 

 

 
a) symbol                 b) Boolean expression         c) Truth table 

 

Fig(7 ). The XNOR  gate symbol , Boolean expression and truth table 

 

 

 

𝑭 = 𝒙  𝒚        

𝑭 = 𝒙 ⨁𝒚 

          = 𝒙𝒚̅  𝒙̅𝒚 

𝑭 = 𝒙 ⨀𝒚 

          = 𝒙𝒚  𝒙 ̅ 𝒚̅ 
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The summery of all logic gates is shown in fig( 8 )  

 

 
 

 

Fig ( 8 ) . The logic gates summary 

 

 

𝑭 = 𝒙̅ 

𝑭 = 𝒙𝒚     

𝑭 = 𝒙  𝒚        

𝑭 = 𝒙 ⨁𝒚 

          = 𝒙𝒚̅  𝒙̅𝒚 

𝑭 = 𝒙 ⨀𝒚 

          = 𝒙𝒚  𝒙 ̅ 𝒚̅ 

NOT 
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  Universality of NAND & NOR Gates 

             It is possible to implement any logic expression using only NAND gates and 

no other type of gate. This is because NAND gates, in the proper combination, can be 

used to perform each of the Boolean operations OR, AND, and NOT.  

                

 

 

          In a similar manner, it can be shown that NOR gates can be arranged to 

implement any of the Boolean operations. 
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Boolean Algebra 

 
In 1854 George Boole introduced a systematic approach of logic and 

developed an algebraic system to treat the logic functions, which is now called 

Boolean algebra. In 1938 C.E. Shannon developed a two-valued Boolean algebra 

called Switching algebra, and demonstrated that the properties of two-valued or 

bistable electrical switching circuits can be represented by this algebra. 

Boolean algebra is a mathematical system for the manipulation of variables 

that can have one of two values. In digital systems, these values are “on” and “off,” 1 

and 0, or “high” and “low.” 

 The following Huntington postulates are satisfied for the definition of Boolean 

algebra on a set of elements S together with two binary operators (+) and (.). 

1. (a) Closer with respect to the operator (+). 

     (b) Closer with respect to the operator (.). 

2. (a) An identity element with respect to + is designated by 0 i.e., x + 0 = 0 + x = x. 

(b) An identity element with respect to . is designated by 1 i.e., x.1 = 1. x= x. 

 

 

 Two-Valued Boolean Algebra 
 

Two-valued Boolean algebra is defined on a set of only two elements, S = 

{0,1}, with rules for two binary operators (+) and (.) and inversion or complement as 

shown in the following operator tables, respectively. 
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The basic rules of Boolean algebra are:- 

 

 
 

 

The proving of  theorems can be done by using the Postulates or the truth table as 

illustrated in the following : 
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Example: prove that  x(y + z)= xy + xz 

Solution:  

 

x y z y + z x(y + z) xy xz xy + xz 

0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 

0 1 0 1 0 0 0 0 

0 1 1 1 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 1 1 1 0 1 1 

1 1 0 1 1 1 0 1 

1 1 1 1 1 1 1 1 

 

Hence, it is proved because  the left side is similar to the right side 
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Example: prove that  x + yz = (x+y)(x + z) 

Solution:  

x y z yz x + yz x + y x + z (x+y)(x+z) 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 

0 1 1 1 1 1 1 1 

1 0 0 0 1 1 1 1 

1 0 1 0 1 1 1 1 

1 1 0 0 1 1 1 1 

1 1 1 1 1 1 1 1 

 

 

Hence, it is proved because  the left side is similar to the right side 

 

Operator Precedence 

The operator precedence for evaluating Boolean expressions is (1) parentheses, 

(2) NOT, (3) AND, and (4) OR. In other words, expressions inside parentheses must 

be evaluated before all other operations. The next operation that holds precedence is 

the complement, and then follows the AND and, finally, the OR. 

 

 

Boolean Function 
 

 A Boolean function is a relation between the binary inputs and the binary 

outputs. The value of a function (output) may be 0 or 1, depending on the values of 

inputs present in the Boolean function. Boolean Function can be described by: 

 

1- a truth table  

2- Boolean equation, 

3- a logic diagram 

 

1- Truth table  

Truth table for a function is a list of all combinations of 1’s and 0’s that can 

be assigned to the binary variables and a list that shows the value of the function 

for each binary combination. 

For n variables,  there are       rows (states)  
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14 

For example, when the number of variables (inputs) n=3, then the number 

of rows (states) =    = 8 as shown in this table: 

 

A B C F 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 0 

 

 

2- Boolean equation (Boolean function form): 

Boolean equation consists of a binary variable identifying the function (output) 

followed by an equal sign and a Boolean expression formed with binary variables, the 

two binary operators AND and OR, one unary operator NOT,  and parentheses. When 

a Boolean expression is implemented with logic gates, each literal in the function is 

designated as input to the gate. The literal may be a primed or unprimed variable. For 

example, the Boolean equation of the truth table above is: 

 

   ̅ ̅     ̅ 

 

Where F is the function (output) 

            A, B, C  are the input variables (literals) 

 

3- Logic diagram (circuit diagram): 

The logic diagram composed of logic gates in which are interconnected by 

wires that carry logic signals. The figure below shows the logic diagram of the 

Boolean equation  

   ̅ ̅     ̅ 
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Example: Write the Boolean expression for the logic diagram shown. 

 
 

Solution:  

 

The Boolean expression of this circuit is : 

             ̅ 

 

Simplification using Boolean algebra: 

       Minimization of the number of literals and the number of terms leads to less 

complex circuits as well as less number of gates, which should be a designer’s aim. 

There are several methods to minimize the Boolean function such as Boolean algebra 

and Karnaugh map (K-Map). Here, simplification or minimization of complex 

algebraic expressions will be shown with the help of postulates and theorems of 

Boolean algebra. 

 Example : Simplify the following Boolean expression. 

       ̅     ̅ 

Solution: 

        ̅   ̅  

      ̅            

       ̅  

     

𝑥𝑦 

𝑧  

  𝑥𝑦  𝑧  
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Example : Simplify the following Boolean expression. 

 

       ̅    ̅ 

Solution:  

       ̅    ̅                                                                       

      ̅                                                       ̅    

           ̅                                                                        

                                                            ̅    

 

Example: Simplify the following Boolean expression. 

     ̅      ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Solution:     using De Morgan theorem 

    ̅    ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ̿                 

    ̿  ̅    

       ̅    

             

Example: simplify and draw the logic diagram of 

          ̅̅ ̅̅ ̅ 

Solution:   

          ̅̅ ̅̅ ̅                                                         

            ̅                                        

        ̅        ̅ 

      ̅                                                   ̅    

     ̅      
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Example : Draw the Boolean expression  

   ̅       

                    

a) using basic logic gates. 

b) using  NOR gates only. 

 

Solution :  

a)  

 
 

b) 
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Boolean Function Forms 

 

We will get four Boolean product terms by combining two variables (literals) x 

and y with logical AND operation. These Boolean product terms are called 

as Minterms or product terms. The minterms are   ̅ ̅  ̅    ̅    . 

Similarly, we will get four Boolean sum terms by combining two variables x and y 

with logical OR operation. These Boolean sumterms are called as Maxterms or sum 

terms. The Maxterms are        ̅  ̅     ̅   ̅ . 

The following table shows the representation of Minterms and Maxterms for 2 

variables. 

 

x y Minterms Maxterms 

0 0     ̅  ̅        

0 1     ̅         ̅ 

1 0       ̅     ̅    

1 1            ̅   ̅ 

If the binary variable is ‘0’, then it is represented as complement of variable in 

Minterm and as the variable itself in Maxterm. Similarly, if the binary variable is ‘1’, 

then it is represented as complement of variable in Maxterm and as the variable itself 

in Minterm. 

a) Canonical forms 

A truth table consists of a set of inputs and outputs. If there are ‘n’ input variables, 

then there will be 2
n
 possible combinations with zeros and ones. So the value of each 

output variable depends on the combination of input variables. So, each output 

variable will have ‘1’ for some combination of input variables and ‘0’ for some other 

combination of input variables. Therefore, we can express each output variable in 

following two ways. 

1- Canonical sum of product (SoP) form 

2- Canonical product of sum (PoS) form 
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1- Canonical SoP form 

Canonical SoP form means Canonical Sum of Products form. In this form, each 

product term contains all literals. So, these product terms are nothing but the 

minterms. Hence, canonical SoP form is also called as sum of Minterms form. 

a-  identify the minterms for which, the output variable is one  

b-  do the logical OR of those minterms in order to get the Boolean  

expression function corresponding to that output variable.  

 

 
Example: Drive the canonical SoP form from the following truth table  

 

 

 

Inputs Output 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

 

 
Here, the output F is ‘1’ for five combinations of inputs. The corresponding Minterms 

are  ̅ ̅ ̅  ̅     ̅ ̅    ̅    . By doing logical OR of these five minterms, we will 

get the Boolean function of output F. 

Therefore, the Boolean function of output is,  

   ̅ ̅ ̅    ̅      ̅ ̅      ̅       

 This is the canonical SoP form of output,F. We can also represent this function in 

following two notations. 

F(A,B,C) = m0+ m3+ m4+ m6+ m7 

 

 (     )  ∑(         ) 

 

 

𝑨̅𝑩̅𝑪̅ 

𝑨̅𝑩𝑪 

𝑨𝑩̅𝑪̅ 

𝑨𝑩𝑪̅ 

𝑨𝑩𝑪 
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2- Canonical PoS form 

 In this form, each sum term contains all literals. So, these sum terms are 

nothing but the Maxterms. Hence, canonical PoS form is also called as product of 

Maxterms form. 

a- identify the Maxterms for which, the output variable is zero  

b- do the logical AND of those Maxterms in order to get the Boolean 

expression function corresponding to that output variable.  

 

 

Example: Drive the canonical PoS form from the following truth table  

 

 

Inputs Output 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 

 
Here, the output F is ‘0’ for three combinations of inputs. The corresponding 

maxterms are      ̅     ̅     ̅     ̅  . By doing logical AND of these 

three maxterms, we will get the Boolean function of output F. 

Therefore, the Boolean function of output is,  

  (     ̅)(    ̅   )( ̅     ̅)  

  

This is the canonical PoS form of output, F. We can also represent this function in 

following two notations. 

                                        F(A, B, C) = M1. M2. M5 

 

 (     )  ∏(     ) 

 

Note: the sequence of literals(letters) must be the same in truth table and in Boolean  

equation.  

 

𝑨  𝑩  𝑪̅ 

𝑨  𝑩̅  𝑪 

𝑨̅  𝑩  𝑪̅ 
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b) Standard forms 

We discussed two canonical forms of representing the Boolean outputs. Similarly, 

there are two standard forms of representing the Boolean outputs. These are the 

simplified version of canonical forms. 

 Standard SoP form: such as        ̅   ̅ ̅ 

 Standard PoS form: such as    (   )(     )( ̅   ) 

 The main advantage of standard forms is that the number of inputs applied to logic 

gates can be minimized. Sometimes, there will be reduction in the total number of 

logic gates required. 

 

Conversion from Canonical SoP form to Standard SoP form 

 In this form, each product term need not contain all literals. So, the product 

terms may or may not be the Minterms. Therefore, the Standard SoP form is the 

simplified form of canonical SoP form. 

We will get Standard SoP form of output variable in two steps. 

 Get the canonical SoP form of output variable 

 Simplify the above Boolean function, which is in canonical SoP form. 

Sometimes, it may not possible to simplify the canonical SoP form. In that case, both 

canonical and standard SoP forms are same. 

Example: convert the canonical SoP expression to standard SoP form 

   ̅ ̅ ̅      ̅       

 

Solution: 

   ̅ ̅ ̅      ̅       

   ̅ ̅ ̅     ( ̅   ) 
   ̅ ̅ ̅                        because     ̅      

 
Hence the standard SoP expression of the given function is 

  

   ̅ ̅ ̅      
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Conversion from standard SoP form to canonical SoP form 
 

The canonical SoP form of a logic function can be obtained by using the following 

procedure: 

 

1)  Check each term in the given logic function. Retain if it is a minterm, continue 

to examine the next term in the same manner. 

 

2) Examine for the variables that are missing in each product which is not a min 

term. If the missing variable in the minterm is X, multiply that minterm with 

(X+X′). 

3) Multiply all the products and discard the redundant terms. 

 

 

 

Example. Obtain the canonical SoP form of the following function: 

 

F (A, B) = A + B 

 

Solution. The given function contains two variables A and B. The variable B is 

missing from the first term of the expression and the variable A is missing from 

the second term of the expression. Therefore, the first term is to be multiplied by 

(   ̅) and the second term is to be multiplied by (   ̅) as demonstrated 

below. 

 

 (   )      

                       

                (   ̅)   (   ̅) 
                    ̅       ̅ 

                    ̅    ̅                                               
 

 

Hence the canonical SoP expression of the given function is  

 (   )       ̅    ̅ 

 

 

Example. Obtain the canonical sum of product form of the following function.      

F (A, B, C) = A + BC 

 

Solution. Here neither the first term nor the second term is Minterm. The given 

function contains three variables A, B, and C. The variables B and C are missing 

from the first term of the expression and the variable A is missing from the second 

term of the expression. Therefore, the first term is to be multiplied by (   ̅) and  

(   ̅) . The second term is to be multiplied by (   ̅). This is demonstrated 

below. 
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 (     )       

                          

                (   ̅)(   ̅)    (   ̅) 
               (     ̅)(   ̅)         ̅ 

                      ̅    ̅    ̅ ̅         ̅ 

                      ̅    ̅    ̅ ̅     ̅                             
 

Hence the canonical SoP expression of the given function is  

 (     )         ̅    ̅    ̅ ̅     ̅ 

 

 

 

 

 

Conversion from standard PoS form to canonical PoS form 
 

The canonical product of sums form of a logic function can be obtained by 

using the following procedure. 

 

1) Check each term in the given logic function. Retain it if it is a maxterm, 

continue to examine the next term in the same manner. 

 

2)  Examine for the variables that are missing in each sum term that is not a 

maxterm. If the missing variable in the maxterm is X, add that maxterm with 

(  ̅). 

 

3) Expand the expression using the properties and postulates as described earlier 

and discard the redundant terms. 

 

Example. Obtain the canonical product of the sum form of the following function.  

 (     )  (   ̅)(   ) 

 

Solution. Now, in the above expression, C is missing from the first term and B is 

missing from the second term. Hence   ̅ is to be added with the first term and   ̅ 

is to be added with the second term as shown below. 

 

 (     )  (   ̅   )(     ) 
                   (   ̅    ̅)(      ̅) 
                   (   ̅   )(   ̅   ̅)(     )(     ̅) 
                   (   ̅   )(   ̅   ̅)(     ) 
 

 

Hence the canonical PoS expression for the given function is  

 (     )  (   ̅   )(   ̅   ̅)(     ) 
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Simplify the Boolean Function using  Karnaugh Map  

(K-Map) 

The second method that used to simplify the Boolean function is the 

Karnaugh map. K-map basically deals with the technique of inserting the 

values of the output variable in cells within a rectangle or square grid 

according to a definite pattern. The number of cells in the K-map is 

determined by the number of input variables and is mathematically 

expressed as two raised to the power of the number of input variables, i.e., 

2
n
, where the number of input variables is n. 

Thus, to simplify a logical expression with two inputs, we require a K-

map with (2
2 

= 4) cells. A four-input logical expression would lead to a  

(2
4
 = 16) celled-K-map, and so on. 

 

Advantages of K-Maps 

1- The K-map simplification technique is simpler and less error-prone 

compared to the method of solving the logical expressions using 

Boolean laws. 

2- It prevents the need to remember each and every Boolean algebraic 

theorem. 

3- It involves fewer steps than the algebraic minimization technique to 

arrive at a simplified expression. 

4- K-map simplification technique always results in minimum 

expression if carried out properly. 

 

 

Disadvantages of K-Maps 

1- As the number of variables in the logical expression increases, the 

K-map simplification process becomes complicated. 

2- The minimum logical expression arrived by using the K-map 

simplification procedure may or may not be unique depending on 

the choices made while forming the groups 
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K-mapping & Minimization Steps 

Step 1: generate K-map based on the number of input variables n   

 

 

Step 2: group all adjacent 1s without including any 0s. All groups must be   

rectangular and contain a “power-of-2” number of 1s  1, 2, 4, 8, 16, 32, … 

Step 3: define product terms using variables common to all minterms in 

group 

Step 4: sum all essential groups plus a minimal set of remaining groups to 

obtain a minimum SOP. 

 

1- Two variables K-Map 

 

Number of input variables are 2 

Hence the number of squares = 2
n 
= 2

2 
= 4  

Inputs 
A   B   

Decimal 
equivalent 

Minterms Output 
F 

0    0 0 m0  ̅ ̅  

0    1 1 m1  ̅   
1    0 2 m2   ̅  

1    1 3 m3     
 

And K-Map of two variables is:  

 

  ̅ 
0 

  
    1 

 ̅ 
0 

            0 
 

            1 
 

  
1 

            2             3  
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Example: simplify the Boolean expression by using K-Map 

   ̅     

Solution:  

Number of input variables are 2 

Hence the number of squares = 2
n 
= 2

2 
= 4  

 

  ̅ 
0 

  
    1 

 ̅ 
0 

            0 
 

            1 
 

  
1 

            2             3  

 

 

    

 

 

Example: simplify the Boolean expression by using K-Map 

       ∑         

Solution:  

Number of input variables are 2 

Hence the number of squares = 2
n 
= 2

2 
= 4 

 

  ̅ 
0 

  
    1 

 ̅ 
0 

            0 
 

            1 
 

  
1 

            2             3  

 

        ̅    

 

 

1 

1 

1 

1 

1 

0 

0 

0 
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Example: simplify the Boolean expression by using K-Map 

   ̅   ̅ ̅ 

Solution:  

Number of input variables are 2 

Hence the number of squares = 2
n 
= 2

2 
= 4  

 

  ̅ 
0 

  
    1 

 ̅ 
0 

            0 
 

            1 
 

  
1 

            2             3  

 

   ̅ 

 

 

Example: simplify the Boolean expression by using K-Map 

       ∑       

Solution:  

Number of input variables are 2 

Hence the number of squares = 2
n 
= 2

2 
= 4 

 

  ̅ 
0 

  
    1 

 ̅ 
0 

            0 
 

            1 
 

  
1 

            2             3  

 

       ∑        ̅ ̅     

 

 

1 

1 

1 1 

0 0 

0 

0 
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2- Three Variables K-Map 

 

Number of input variables are 3 

Hence the number of squares = 2
n 
= 2

3  
= 8 

 

The truth table is  

 

Inputs 
A   B    C  

Decimal 
equivalent 

Minterms Output 
F 

0    0    0 0 m0  ̅ ̅ ̅  
0    0    1 1 m1  ̅ ̅   

0    1    0 2 m2  ̅  ̅  

0    1    1 3 m3  ̅    
1    0    0 4 m4   ̅ ̅  

1    0    1 5 m5   ̅   
1    1    0 6 m6    ̅  

1    1    1 7 m7      
 

 

And the K-Map of three variables is: 

  

 ̅ ̅ 
00 

 
 ̅  

    01 

 
   
11 

 

  ̅ 
10 

 ̅ 
0 

               0 
 

                1 
 

               3 
 

                2 
 

  
1 

               4               5                  7                 6 
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Example: simplify the Boolean expression by using K-Map 

          ̅ ̅ ̅   ̅    ̅  ̅ 

Solution:  

Number of input variables are 3 

Hence the number of squares = 2
n 
= 2

3  
= 8 

  

 ̅ ̅ 
00 

 
 ̅  

    01 

 
   
11 

 

  ̅ 
10 

 ̅ 
0 

               0 
 

                1 
 

               3 
 

                2 
 

  
1 

               4               5                  7                 6 

 

          ̅ ̅   ̅  

 

 

Example: simplify the Boolean expression by using K-Map 

         ∑           

Solution:  

Number of input variables are 3 

Hence the number of squares = 2
n 
= 2

3  
= 8 

  

 ̅ ̅ 
00 

 
 ̅  

    01 

 
   
11 

 

  ̅ 
10 

 ̅ 
0 

               0 
 

                1 
 

               3 
 

                2 
 

  
1 

               4               5                  7                 6 

 

          ̅ ̅ ̅        

 
 

1 1 1 

1 

1 

1 

1 

0 

0 0 0 0 

0 0 

0 0 
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3- Four Variables K-map 

Number of input variables are 4 

Hence the number of squares = 2
n 
= 2

4  
= 16 

The truth table is  

Inputs 
A   B    C    D 

Decimal 
equivalent 

Minterms Output 
F 

0    0    0    0 0 m0  ̅ ̅ ̅ ̅  

0    0    0    1 1 m1  ̅ ̅ ̅   
0    0    1    0 2 m2  ̅ ̅  ̅  

0    0    1    1 3 m3  ̅ ̅    
0    1    0    0 4 m4  ̅  ̅ ̅  

0    1    0    1 5 m5  ̅  ̅   

0    1    1    0 6 m6  ̅   ̅  
0    1    1    1 7 m7  ̅     

1    0    0    0 8 m8   ̅ ̅ ̅  
1    0    0    1 9 m9   ̅ ̅   

1    0    1    0 10 m10   ̅  ̅  

1    0    1    1 11 m11   ̅    
1    1    0    0 12 m12    ̅ ̅  

1    1    0    1 13 m13    ̅   
1    1    1    0 14 m14     ̅  

1    1    1    1 15 m15       
 

And the K-Map of four variables is: 

  ̅ ̅ 
00 

 ̅  
    01 

   
11 

  ̅ 
10 

 ̅ ̅ 
00 

            0 
 

            1 
 

            3 
 

            2 
 

 ̅  
01 

            4             5              7             6 

   
    11 

          12           13           15           14 

  ̅ 
10 

            8             9           11           10 
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Example: simplify the Boolean expression by using K-Map 

            ̅ ̅ ̅ ̅   ̅ ̅  ̅    ̅ ̅ ̅    ̅  ̅   ̅       ̅  

Solution:  Number of input variables are 4 

Hence the number of squares = 2
n 
= 2

4  
= 16 

  ̅ ̅ 
00 

 ̅  
    01 

   
11 

  ̅ 
10 

 ̅ ̅ 
00 

            0 
 

            1 
 

            3 
 

            2 
 

 ̅  
01 

            4             5              7            6 

   
    11 

          12           13           15           14 

  ̅ 
10 

            8             9           11           10 

 

 

Example: simplify the Boolean expression by using K-Map 

           ∑                         

Solution: Number of input variables are 4 

Hence the number of squares = 2
n 
= 2

4  
= 16 

  ̅ ̅ 
00 

 ̅  
    01 

   
11 

  ̅ 
10 

 ̅ ̅ 
00 

            0 
 

            1 
 

            3 
 

            2 
 

 ̅  
01 

            4             5              7             6 

   
    11 

          12           13           15           14 

  ̅ 
10 

            8             9           11           10 

 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

𝑭 𝑨 𝑩 𝑪 𝑫  𝑩̅𝑫̅  𝑨̅𝑩𝑪𝑫  𝑨𝑩𝑪̅𝑫 

𝑭 𝑨 𝑩 𝑪 𝑫  𝑫̅  𝑨𝑩𝑪 

0 

0 0 

0 0 

0 

0 

0 

0 0 

0 0 

0 0 

0 

0 0 
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K-Map with Don’t Care Conditions 

           In certain cases some of the minterms may never occur or it may 

not matter what happens if they do  

– In such cases we fill in the Karnaugh map with an   X  that meaning 

don't care 

– When minimizing an X  is like a "joker" 

• X can be 0 or 1 - whatever helps best with the minimization 

 

Example: simplify the Boolean expression by using K-Map 

           ∑            ∑             

Solution: Number of input variables are 4 

Hence the number of squares = 2
n 
= 2

4  
= 16 

 

  ̅ ̅ 
00 

 ̅  
    01 

   
11 

  ̅ 
10 

 ̅ ̅ 
00 

            0 
 

            1 
 

            3 
 

            2 
 

 ̅  
01 

            4             5              7             6 

   
    11 

          12           13           15           14 

  ̅ 
10 

            8             9           11           10 

 

 

            ̅   ̅  

 

 

 

 

1 

1 

1 

X 

X 

X X 

1 

0 

0 

0 

0 

0 0 

0 0 
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Logic Circuits 
 

The digital system consists of two types of circuits, namely 

1- Combinational Logic Circuits. 

2- Sequential Logic Circuits. 

 

1- Combinational Logic Circuits: 

              A combinational circuit consists of logic gates whose outputs at 

any time are determined from only the present combination of inputs 

without regard to previous inputs or previous state of outputs. The design 

of Combinational logic circuit depending on the derivation of the Boolean 

expression from the truth table base on sum of product or product of 

sum.  

 

Design Procedures using POS are :- 

1- Write the truth table for all input states which equal to ( 2
n
 ) where 

n is the number of inputs. 

2- Write the expression for each (Logic 0) output with OR gate 

3- Write the overall output  expression by AND ing the terms in step 2  

and if it is possible Simplify this expression. 

     4- Implement this expression using logic gates 

 

Example : Derive the Boolean expression from the following truth table 

using POS and draw the logic diagram. 

 

Inputs 
B   A   

Output 
Y 

0    0 1 

0    1 0 

1    0 1 

1    1 1 

 

Sol:           ̅    
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Design Procedures using SOP are :- 

 

1- Write the truth table for all input states which equal to ( 2
n
 ) where 

n is the number of inputs. 

2- Write the expression for each (Logic 1) output with AND gate 

3- Write the overall output  expression by OR ing the terms in step 2  

and if it is possible Simplify this expression. 

     4- Implement this expression using logic gates 

 

Example: Design a logic circuit that has 3 inputs and gives a (logic 1) 

output when the binary input value less than or equal 2. 

 

Sol:       number of inputs =3       ;        number of states = 2
3
 = 8 

 

Inputs 
C   B    A  

Output 
Y 

0    0    0 1 

0    0    1 1 

0    1    0 1 

0    1    1 0 

1    0    0 0 

1    0    1 0 

1    1    0 0 

1    1    1 0 

 

   ̅ ̅ ̅    ̅ ̅   ̅  ̅ 
   ̅ ̅  ̅      ̅  ̅ 

   ̅ ̅   ̅  ̅ 
   ̅  ̅   ̅   
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Common Functions of Combinational Logic 
There are many combinational logic circuits or diagrams commonly used 

in all logic systems such as: 

1- Adders & Subtractors 

2- Magnitude Comparators 

3- Multiplexer and demultiplexers 

4- Decoders and Encoders 

 

 

Adders  
 

  Arithmetic operations are among the basic functions of a digital 

computer. Addition of two binary digits is the most basic arithmetic 

operation. The simple addition consists of four possible elementary 

operations, which are 0+0 = 0, 0+1 = 1, 1+0 = 1, and 1+1 = 0 with carry 

one. The two types of adders are :-   

 

a) Half adder  ( HA ) : 

A half adder is a multiple outputs combinational logic circuit which 

add two bits of binary data without carry, producing a sum (S ) 

and a carry out  (Co ). 

   

 
       ̅    ̅ 
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b) Full adder ( FA ) :  

             A full adder is a multiple outputs combinational logic circuit 

which add two bits of binary data with  carry input ( Ci ), producing a 

sum (S ) and a carry out  (Co ). 

 

 
 

    ̅  ̅   ̅   ̅   ̅ ̅        

    ̅   ̅   ̅       ̅ ̅      

    ̅             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

          

 

       ̅    ̅    ̅         

        ̅         ̅   ̅     

              

 

 

Parallel adder : 

    How can we add two binary numbers of 4 bits 

 

N                  A3 A2 A1 A0 

M                  B3 B2 B1 B0  + 

 S            S4   S3 S2 S1  S0 

 

We need 3 full adders and 1 half adder  
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Subtractors 
 

Subtraction is the other basic function of arithmetic operations of 

information-processing tasks of digital computers. Similar to the addition 

function, subtraction of two binary digits consists of four possible 

elementary operations, which are 0–0 = 0,  0–1 = 1 with borrow of 1,  1–0 

= 1, and 1–1 = 0. There are two types of subtractor 

 

a) Half Subtractor 

 

A half-subtractor has two inputs and two outputs. Let the 

input be designated as X and Y respectively, and output functions 

be designated as D for difference and B for borrow. The truth table 

of the function X-Y  is as follows 

 

 

 
 

 

       ̅    ̅ 

          

      ̅  
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b) Full Subtractor 

 

    A combinational circuit of full-subtractor performs the operation of 

subtraction of three bits—the minuend, subtrahend, and borrow generated 

from the subtraction operation of previous significant digits and produces 

the outputs difference and borrow. Let us designate the input variables 

minuend as X, subtrahend as Y, and previous borrow as Z, and outputs 

difference as D and borrow as B. Eight different input combinations are 

possible for three input variables. The truth table of X- Y is shown below 

 

 

 
 

 

   ̅ ̅   ̅  ̅    ̅ ̅      

   ̅  ̅    ̅     ̅ ̅      

   ̅            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

        

 

   ̅ ̅   ̅  ̅   ̅       

   ̅   ̅        ̅ ̅      
   ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
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Magnitude Comparator 
 

A magnitude comparator is one of the useful combinational logic 

networks and has wide applications. It compares two binary numbers and 

determines if one number is greater than, less than, or equal to the other 

number. It is a multiple output combinational logic circuit. If two binary 

numbers are considered as A and B, the magnitude comparator gives three 

outputs for A > B, A < B, and A = B. 

 

 

Input variables Output Variables 

A B A=B A>B A<B 

0 0 1 0 0 

0 1 0 0 1 

1 0 0 1 0 

1 1 1 0 0 

 

 

        ̅ ̅          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

 

         ̅ 

 

        ̅  
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Multiplexer 
 

           A multiplexer (mux) is a digital system that selects one out of possible 2
n
 inputs 

depending on n select bits. For instance, the truth table and schematic symbol for a 2-

to-1 mux are shown below. 

 

 
 

symbol of  a 2-to-1 mux 

 

And the truth table of  (2-to-1) mux is : 

 

 
 

The Boolean expression for the output (Y) in terms of inputs A, B and S is: 

 

   ̅ ̅   ̅      ̅      

   ̅   ̅         ̅     

   ̅     

 

 
 

  2 - to – 1 multiplexer 
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  Larger multiplexers are also common, if you have 4 inputs then you need 2 select 

bits. This is the reason for the n-select bits mapping 2
n
 inputs to one output. 

 

 

 

 

Selectors Inputs Output 

X Z D C B A Y 

0 0 0 0 0 0 0 

0 0 0 0 0 1 1 

0 0 0 0 1 0 0 

0 0 0 0 1 1 1 

0 0 0 1 0 0 0 

0 0 0 1 0 1 1 

0 0 0 1 1 0 0 

0 0 0 1 1 1 1 

0 0 1 0 0 0 0 

0 0 1 0 0 1 1 

0 0 1 0 1 0 0 

0 0 1 0 1 1 1 

0 0 1 1 0 0 0 

0 0 1 1 0 1 1 

0 0 1 1 1 0 0 

0 0 1 1 1 1 1 

0 1 0 0 0 0 0 

0 1 0 0 0 1 0 

0 1 0 0 1 0 1 

0 1 0 0 1 1 1 

0 1 0 1 0 0 0 

0 1 0 1 0 1 0 

0 1 0 1 1 0 1 

0 1 0 1 1 1 1 

0 1 1 0 0 0 0 

0 1 1 0 0 1 0 

0 1 1 0 1 0 1 

0 1 1 0 1 1 1 

0 1 1 1 0 0 0 

0 1 1 1 0 1 0 

0 1 1 1 1 0 1 

0 1 1 1 1 1 1 

1 0 0 0 0 0 0 

1 0 0 0 0 1 0 

1 0 0 0 1 0 0 

1 0 0 0 1 1 0 

1 0 0 1 0 0 1 

1 0 0 1 0 1 1 

1 0 0 1 1 0 1 

1 0 0 1 1 1 1 

1 0 1 0 0 0 0 

1 0 1 0 0 1 0 

1 0 1 0 1 0 0 

1 0 1 0 1 1 0 

1 0 1 1 0 0 1 

1 0 1 1 0 1 1 

1 0 1 1 1 0 1 

1 0 1 1 1 1 1 

1 1 0 0 0 0 0 

1 1 0 0 0 1 0 

1 1 0 0 1 0 0 

1 1 0 0 1 1 0 

1 1 0 1 0 0 0 

1 1 0 1 0 1 0 

1 1 0 1 1 0 0 

1 1 0 1 1 1 0 

1 1 1 0 0 0 1 

1 1 1 0 0 1 1 

1 1 1 0 1 0 1 

1 1 1 0 1 1 1 

1 1 1 1 0 0 1 

1 1 1 1 0 1 1 

1 1 1 1 1 0 1 

1 1 1 1 1 1 1 

𝒀  𝑿̅𝒁̅𝑨  𝑿̅𝒁𝑩  𝑿𝒁̅𝑪  𝑿𝒁𝑫 

 
 

 

 
 

 
 

        4 - to – 1 multiplexer 
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Demultiplexer 
 

           A demultiplexer basically reverses the multiplexing function. It is take data 

from one line and distribute them to given number of output lines.  

The simplest type of demultiplexer is the 1- to- 2  lines DMUX. as shown in Figure 

below. 

 

Selector Input Outputs 

S Y B A 

0 0 0 0 

0 1 0 1 

1 0 0 0 

1 1 1 0 

 

 

   ̅  

     

 

 

 
 

1 to  2 Demultiplexer 

 

Figure below   shows a one to four line demultiplexer circuit. The input data line goes 

to all of the AND gates. The two select lines enable only one gate at a time and the 

data appearing on the input line will pass through the selected gate to the associated 

output line. 

Truth table of 1- to – 4 demultiplexer 

       

 

          
   ̅ ̅  
   ̅   

    ̅  

      

 

 

 

 
1- to – 4  Demultiplexer 
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Decoder 
  

          As its name indicates, a decoder is a circuit component that decodes an input 

code. Given a binary code of n-bits, a decoder will tell which code is this out of the 2
n
 

possible codes (See Figure ). Thus, a decoder has n- inputs and 2
n
 outputs. Each of the 

2
n
 outputs corresponds to one of the possible 2

n
 input combinations. 

 

 
 

In general, output i equals 1 if and only if the input binary code has a value of i. 

 

Example: 2-to-4 decoder 
              Let us discuss the operation and combinational circuit design of a decoder by 

taking the specific example of a 2-to-4 decoder. It contains two inputs denoted by A 

and B and four outputs denoted by D0, D1, D2, and D3 as shown in figure. 

 

 

 
 

 
 

 

As we see in the truth table , for each input combination, one output line is activated, 

that is, the output line corresponding to the input combination becomes 1, while other 

lines remain inactive. For example, an input of 00 at the input will activate line D0. and  

01 at the input will activate line D1, and so on. 
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    ̅ ̅ 

     ̅ 

    ̅  

      

 

 
 

The logic diagram of 2-to- 4 Decoder 

 

 

Example: 3-to-8 decoder 
It contains three inputs denoted by a, b and c, with eight outputs denoted by 

D0, D1, D2, D3, D4, D5, D6 and D7 as shown in figure 

 

 
 

 

𝑫𝟎  𝒄 𝒃̅𝒂̅ 

𝑫𝟏  𝒄 𝒃̅𝒂 

𝑫𝟐  𝒄 𝒃𝒂̅ 

𝑫𝟑  𝒄 𝒃𝒂 

𝑫𝟒  𝒄𝒃̅𝒂̅ 

𝑫𝟓  𝒄𝒃̅𝒂 

𝑫𝟔  𝒄𝒃𝒂̅ 

𝑫𝟕  𝒄𝒃𝒂 
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Encoder  
 

               The encoder is a combinational circuit that performs the reverse operation of 

the decoder. The encoder has a maximum of 2
n 

inputs and n outputs. Only one input 

can be logic 1 at any given time (active input). All other inputs must be 0’s.and the 

Output lines generate the binary code corresponding to the active input. The block 

diagram of 2
n
 –to-n encoder as shown below . 

 

 

 
 

 

Example:  4-to-2 Encoder 
      The inputs are 4 and the outputs  are 2  

The block diagram and the truth table of a 4-to-2 encoder are shown  below . 

 

 
 

So that the logic expression of outputs are: 

      A = D1 + D3 

      B = D2 + D3 

And the logic diagram of 4-to- 2 encoder as shown below: 
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Example:  8-to-3 Encoder 
      The inputs are 8 and the outputs  are 3. The truth table and the logic diagram of a 

8-to-3 encoder are shown  below. 

 
 

 
 

Binary to Gray / Gray to Binary Conversion:  
           The gray code is widely used in many digital systems specially in shaft  

encoders and analog to digital conversion, but it is difficult to use the gray-code in 

arithmetic operations, since there are only one bit change between two consecutive 

gray code number, and it is unweighted code, and the XOR gate is the most suitable 

gate for this purpose as shown in Figure below:  

 

 

𝒂  𝑫𝟏 +𝑫𝟑 +𝑫𝟓 +𝑫𝟕 

𝒃  𝑫𝟐 +𝑫𝟑 +𝑫𝟔 +𝑫𝟕 

𝒄  𝑫𝟒 +𝑫𝟓 +𝑫𝟔 +𝑫𝟕 

 
 


